K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

Vì đây là lần đầu tiên bn gửi câu hỏi nên mk đã kiên nhẫn dịch cái đề và hi vọng nó đúng!

Ta có: \(\left(\sqrt{8+2\sqrt{7}}+2.\sqrt{8-2\sqrt{7}}\right).\left(\sqrt{63}+1\right)\)

\(=\left(\sqrt{7+2\sqrt{7}+1}+2.\sqrt{7-2\sqrt{7}+1}\right).\left(\sqrt{63}+1\right)\)

\(=\left(\sqrt{\left(\sqrt{7}+1\right)^2}+2.\sqrt{\left(\sqrt{7}-1\right)^2}\right)\left(\sqrt{63}+1\right)\)

\(=\left(\left|\sqrt{7}+1\right|+2.\left|\sqrt{7}-1\right|\right).\left(\sqrt{63}+1\right)\)

\(=\left(\sqrt{7}+1+2\sqrt{7}-2\right)\left(\sqrt{63}+1\right)\)

\(=\left(3\sqrt{7}-1\right)\left(\sqrt{63}+1\right)\)

\(=\left(\sqrt{63}-1\right)\left(\sqrt{63}+1\right)=63-1=62\)

6 tháng 7 2017

Ôi chu choa mạ ơi! Cái đề kiểu chi ri???

\(=\sqrt{5}-\sqrt{3}+\sqrt{5}-2=2\sqrt{5}-2-\sqrt{3}\)

20 tháng 1 2022

2 mũ 48-2 căn 15      +  3

12 tháng 9 2021

\(\approx12,4522\)

1 tháng 1 2018

có sai đề không bạn.Chỗ kia mình nghĩ không phải 33 mà là 23 cơ

8 tháng 11 2021

ĐKXĐ: \(x\ge-\dfrac{5}{2}\)

\(\sqrt{2x+5}+\sqrt{x+7}+x-8=0\\ \Leftrightarrow\left(\sqrt{2x+5}-3\right)+\left(\sqrt{x+7}-3\right)+x-2=0\\ \Leftrightarrow\dfrac{2x-4}{\sqrt{2x+5}+3}+\dfrac{x-2}{\sqrt{x+7}+3}+x-2=0\)

\(\Leftrightarrow\dfrac{2\left(x-2\right)}{\sqrt{2x+5}+3}+\dfrac{x-2}{\sqrt{x+7}+3}+x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(\dfrac{2}{\sqrt{2x+5}+3}+\dfrac{1}{\sqrt{x+7}+3}+1\right)=0\)

Vì \(\dfrac{2}{\sqrt{2x+5}+3}>0;\dfrac{1}{\sqrt{x+7}+3}>0;1>0\Rightarrow\dfrac{2}{\sqrt{2x+5}+3}+\dfrac{1}{\sqrt{x+7}+3}+1>0\)

\(\Rightarrow x-2=0\\ \Rightarrow x=2\left(tm\right)\)

Vậy \(x=2\)

Không phải là căn bậc hai số học là đứng độc lập 1 mình đâu bạn

AH
Akai Haruma
Giáo viên
15 tháng 7 2021

Những trường hợp em nêu đều là CBHSH

$2\sqrt{3}$ là căn bậc 2 số học của $12$

$\sqrt{3}.\sqrt{4}$ là căn bậc 2 số học của $12$

$\sqrt{\frac{3}{4}}$ là căn bậc 2 số học $\frac{3}{4}$

Em cứ nhớ $\sqrt{x}$ (với $x$ là số không âm) là CBHSH của $x$, dù nó biểu diễn kiểu gì đi chăng nữa.