Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình có nick nè
mình có tank vip như :mikasa,na tra,lữ bố,keniki,....
55^n + 1 - 55^n
= 55^n.55 - 55^n
= 55^n.( 55 - 1 )
= 55^n.54\(⋮54\)
Đề thế này phải ko bạn:
Chứng minh rằng: \(x^5+y^5\ge x^4.y+x.y^4\)với \(x,y\ne0\)và\(x+y\ge0\)
Khoảng cách giữa các số là 4 đơn vị!
Vậy: số tiếp theo là:
18 + 4 = 22
Đ/s: 22
Ta có: 2222 đồng dư với 3(mod 7)
=> 22222 đồng dư với 32(mod 7)
=> 22222 đồng dư với 9(mod 7)
=> 22222 đồng dư với 2(mod 7)
=> (22222)3 đồng dư với 23(mod 7)
=> 22226 đồng dư với 8(mod 7)
=> 22226 đồng dư với 1(mod 7)
=> (22226)925 đồng dư với 1925(mod 7)
=> 22225550 đồng dư với 1925(mod 7)
Vì 22222 đồng dư với 2(mod 7)
=>(22222)2 đồng dư với 22(mod 7)
=>22224 đồng dư với 4(mod 7)
=>22224.2222 đồng dư với 4.3(mod 7)
=>22225 đồng dư với 12(mod 7)
=>22225 đồng dư với 5(mod 7)
=>22225.22225550 đồng dư với 5.1(mod 7)
=>22225555 đồng dư với 5(mod 7)
Lại có:
5555 đồng dư với 4(mod 7)
=>55553 đồng dư với 43(mod 7)
=>55553 đồng dư với 64(mod 7)
=>55553 đồng dư với 1(mod 7)
=>(55553)740 đồng dư với 1740(mod 7)
=>55552220 đồng dư với 1(mod 7)
Vì 5555 đồng dư với 4(mod 7)
=>55552 đồng dư với 42(mod 7)
=>55552 đồng dư với 16(mod 7)
=>55552 đồng dư với 3(mod 7)
=>55552.55552220 đồng dư với 3.1(mod 7)
=>55552222 đồng dư với 3(mod 7)
=>22225555+55552222 đồng dư với 4+3(mod 7)
=>22225555+55552222 đồng dư với 7(mod 7)
=>22225555+55552222 đồng dư với 0(mod 7)
=>22225555+55552222 chia hết cho 7
=>ĐPCM
Áp dụng bất đẳng thức về cạnh :
- Trong tam giác OAB : \(AB< OA+OB\left(1\right)\)
- Trong tam giác OCD : \(CD< OC+OD\left(2\right)\)
Cộng (1) và (2) theo vế được : \(AB+CD< OA+OB+OC+OD=AC+BD\)
\(\Rightarrow AB+CD< AC+BD\left(\text{*}\right)\)
Tương tự, ta áp dụng bất đẳng thức về cạnh trong các tam giác ABC , ACD , ABD , BDC được :
- \(\hept{\begin{cases}AC< AB+BC\left(3\right)\\AC< AD+DC\left(4\right)\end{cases}}\)
- \(\hept{\begin{cases}BD< AD+AB\left(5\right)\\BD< CD+BC\left(6\right)\end{cases}}\)
Cộng (3) , (4) , (5) , (6) theo vế được :
\(2\left(AC+BD\right)< 2\left(AB+BC+CD+AD\right)\Rightarrow AC+BD< AB+BC+CD+AD\left(\text{*}\text{*}\right)\)
Từ (*) và (**) ta được điều phải chứng minh.
chứng minh rằng nếu : A2+B2+C2=AB+BC+AC
thì A=B=C
chứng minh càng chi tiết càng tốt nha các bạn cám ơn