Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
a) \(A=\left(\sqrt{3}+1\right)^2+\frac{5}{4}\sqrt{48}-\frac{2}{\sqrt{3+1}}\)
\(A=3+2\sqrt{3}+1+\sqrt{\frac{25.48}{16}}-\frac{2}{\sqrt{4}}\)
\(A=4+2\sqrt{3}+\sqrt{25.3}-\frac{2}{2}\)
\(A=4+2\sqrt{3}+5\sqrt{3}-1\)
\(A=3+7\sqrt{3}\)
b) \(\frac{4}{3-\sqrt{5}}-\frac{3}{\sqrt{5}+\sqrt{2}}-\frac{1}{\sqrt{2}-1}\)
\(=\frac{4\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}-\frac{3\left(\sqrt{5}-\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)}-\frac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)
\(A=\frac{4\left(3+\sqrt{5}\right)}{9-5}-\frac{3\left(\sqrt{5}-\sqrt{2}\right)}{5-2}-\frac{\sqrt{2}+1}{2-1}\)
\(A=3+\sqrt{5}-\sqrt{5}+\sqrt{2}-\sqrt{2}-1\)
\(A=2\)
Phần b mình viết nhầm tên thành A, bn sửa thành B nhé
c) \(C=\sqrt{4-2\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)
\(C=\sqrt{3-2\sqrt{3}+1}-\sqrt{4+4\sqrt{3}+3}\)
\(C=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(C=\sqrt{3}-1-2-\sqrt{3}\)
\(C=-3\)
Đặt \(A=\frac{\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
=> \(A^2=\frac{\left(3-\sqrt{5}\right).\left(3+\sqrt{5}\right)^2}{12+4\sqrt{5}}\)
\(=\frac{\left(9-5\right).\left(3+\sqrt{5}\right)}{4.\left(3+\sqrt{5}\right)}\)
= 1
=> A = 1
GIẢI
\(M=\frac{\sqrt[2]{4-\sqrt{5+\sqrt{20+1+2\sqrt{20.1}}}}}{\sqrt{10}-\sqrt{2}}=\frac{\sqrt[2]{4-\sqrt{5+\sqrt{\left(\sqrt{20}+1\right)^2}}}}{\sqrt{10}-\sqrt{2}}\)
\(=\frac{\sqrt[2]{4-\sqrt{5+\sqrt{20}+1}}}{\sqrt{10}-\sqrt{2}}=\frac{\sqrt[2]{4-\sqrt{5+1+2\sqrt{5}}}}{\sqrt{10}-\sqrt{2}}\)
\(=\frac{\sqrt[2]{4-\sqrt{\left(\sqrt{5}+1\right)^2}}}{\sqrt{10}-\sqrt{2}}=\frac{\sqrt[2]{4-\left(\sqrt{5}+1\right)}}{\sqrt{2}\left(\sqrt{5}-1\right)}=\frac{\sqrt{2}.\sqrt{3-\sqrt{5}}}{\sqrt{5}-1}\)
\(=\frac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}=\frac{\sqrt{5+1-2\sqrt{5}}}{\sqrt{5}-1}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{5}-1}=\frac{\sqrt{5}-1}{\sqrt{5}-1}=1\)
Chúc bạn học tốt !!!