K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

đây là toán lớp 4 hay lớp 5

AH
Akai Haruma
Giáo viên
16 tháng 12 2021

Lời giải:

a. Đợt 1 cô Lan bán một bộ quần áo lời số tiền là:

$200000(1,25-1)=50000$ (đồng)

b.

Giá tiền 1 bộ quần áo bán đợt 1:

$200000.1,25=250000$ (đồng)

Số tiền cô Lan thu về khi bán 100 bộ quần áo:
$80.250000+20.250000(1-0,1)=24500000$ (đồng)

16 tháng 12 2021

ktra câu này giúp em ạ

https://hoc24.vn/cau-hoi/tim-m-de-pt-leftx-1rightleftx-3right3sqrtx2-4x5-2m0-co-nghiem.3678206323768

18 tháng 7 2018

Phân số chỉ số bình trà bán lúc sau là: 

\(1-\frac{4}{5}=\frac{1}{5}\)   (tổng số bình trà)

Số tiền lãi của một bình khi bán giá 10 000 đồng là:

       10 000 - 7 000 = 3 000 (đồng)

Số tiền lãi của một bình khi bán giá 9 000 đồng là:

       9 000 - 7 000 = 2 000 (đồng)

Giả sử người đó bán 5 bình, lần đầu bán 4 bình, lần sau bán 1 bình.

Khi đó số tiền lãi người đó thu được là:

     4 x 3 000 + 1 x 2 000 = 14 000 (đồng)

Số tiền lãi thực tế gấp số tiền trên số lần là:

    560 000 : 14 000 = 40 (lần)

Vậy tổng số bình trà mà người đó đã bán là:

   5 x 40 = 200 (bình)

                   Đáp số: 200 bình. 

23 tháng 7 2018

200 bình

26 tháng 12 2021

Câu 1 :

Số vốn là:

            100x5=500 triệu

Số tiền bán được 75 cái là:

            6,2x75=465 triệu

Lợi nhuận 20%,tức số tiền  ông nhận sau khi bán 100 cái là

            500+500x20%=600 triệu

Số tiền nhận khi bán 25 chiếc còn lại:

            600-465=135

Giá mỗi chiếc là

            135:25=5,4Triệu

Câu 2 :

a) Chứng minh AE = 2AB và tứ giác AECD là hình vuông.

Vì E là điểm đối xứng với A qua B nên B là trung điểm của AE. Do đó, AE = 2AB.

Theo đề bài ta có: AD = CD = 2AB

=> AD = CD = AE.

Vì ABCD là hình thang vuông nên ta có: {AB//CDˆA=ˆD=90∘AB // CDA^=D^=90∘

Xét tứ giác AECD ta có:

AE // CD

AE = CD

=> Tứ giác AECD là hình bình hành (dấu hiệu nhận biết).

Mà ta lại có: AD = AE (chứng minh trên)

=> Tứ giác AECD là hình thoi (dấu hiệu nhận biết)

Theo giả thiết: ˆA=ˆD=90oA^=D^=90o

Suy ra, tứ giác AECD là hình vuông (dấu hiệu nhận biết)

b) Gọi M là trung điểm của EC và I là giao điểm của BC và DM. Chứng minh diện tích tam giác DIC bằng diện tích tứ giác EBIM.

Vì tứ giác AECD là hình vuông nên AE = CE = CD = DA (định nghĩa hình vuông)

Vì M là trung điểm của EC nên EM = CM =CE2=CE2.

Mà BE=AE2BE=AE2 và AE = CE (chứng minh trên).

=> BE = CM

Ta có: SBEC=12.BE.CESDCM=12.CM.DC}⇒SBEC=SDCMSBEC=12.BE.CESDCM=12.CM.DC⇒SBEC=SDCM

⇒SBEMI+SCMI=SDCI+SCMI⇒SBEMI+SCMI=SDCI+SCMI

⇒SBEMI=SDCI⇒SBEMI=SDCI (đpcm)

c) Biết DA và CB cắt nhau tại V. Gọi N là hình chiếu của I trên AD. Chứng minh NI2=ND.NVNI2=ND.NV.

Xét tam giác BEC và tam giác MCD ta có:

BE = MC (cmt)

ˆBEC=ˆMCD=90∘BEC^=MCD^=90∘

EC = CE (cmt)

⇒ΔBEC=ΔMCD⇒ΔBEC=ΔMCD (c-g-c)

⇒ˆBCE=ˆMDC⇒BCE^=MDC^ (hai góc tương ứng)

Ta có: ˆBCE+¯¯¯¯¯¯¯¯¯BCD=90∘⇒ˆMDC+ˆBCD=90∘BCE^+BCD¯=90∘⇒MDC^+BCD^=90∘

Xét tam giác DIC ta có: ˆIDC+ˆDCI=90∘⇒ˆDIC=90∘IDC^+DCI^=90∘⇒DIC^=90∘ (áp dụng định lý tổng ba góc trong một tam giác)

=> DI vuông góc với BC tại I.

Xét tam giác DNI vuông tại N, áp dụng định lý Py-ta-go ta có:

ID2=IN2+ND2⇒ND2=ID2−IN2ID2=IN2+ND2⇒ND2=ID2−IN2       

Xét tam giác VNI vuông tại N, áp dụng định lý Py-ta-go ta có:

IV2=IN2+NV2⇒NV2=IV2−IN2IV2=IN2+NV2⇒NV2=IV2−IN2 

Xét tam giác DVI vuông tại I, áp dụng định lý Py-ta-go ta có:

ID2+IV2=DV2ID2+IV2=DV2

⇒ID2+IV2=(VN+ND)2⇒ID2+IV2=VN+ND2

⇒ID2+IV2=VN2+2VN.ND+ND2⇒ID2+IV2=VN2+2VN.ND+ND2

⇒ID2+IV2=IV2−IN2+2VN.ND+ID2−IN2⇒ID2+IV2=IV2−IN2+2VN.ND+ID2−IN2

⇒2IN2=2VN.ND⇒2IN2=2VN.ND

⇒IN2=VN.ND⇒IN2=VN.ND.

Vậy NI2=ND.NVNI2=ND.NV.

 

21 tháng 12 2021

Số vốn là :

100× 5 =500 ( triệu đồng )

75 cái bán được số tiền là :

6,2 × 75 = 465 ( triệu đồng )

Lợi nhuận 20số tiền ông phải nhận được sau khi bán 100 cái là :

500 + 500× 200 == 600 ( triệu )

Vì :

Số tiền cần nhận được khi bán 25 chiếc còn lại là :

600  465 == 135 ( triệu )

Suy ra :

Giá mỗi chiếc là :

135 : 25 == 5,4 ( triệu )