Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác \(ABD\)vuông tại \(A\):
\(BD^2=AB^2+AD^2\)(định lí Pythagore)
\(=4^2+10^2=116\)
\(\Rightarrow BD=\sqrt{116}=2\sqrt{29}\left(cm\right)\)
Lấy \(E\)thuộc \(CD\)sao cho \(AE\perp AC\)
Suy ra \(ABDE\)là hình bình hành.
\(AE=BD=2\sqrt{29}\left(cm\right),DE=AB=4\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AD\):
\(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AD^2}-\frac{1}{AE^2}=\frac{1}{100}-\frac{1}{116}=\frac{1}{715}\)
\(\Rightarrow AC=\sqrt{715}\left(cm\right)\)
\(AE^2=ED.EC\Leftrightarrow EC=\frac{AE^2}{ED}=\frac{116}{4}=29\left(cm\right)\)suy ra \(DC=25\left(cm\right)\)
Hạ \(BH\perp CD\).
\(BC^2=HC^2+BH^2=21^2+10^2=541\Rightarrow BC=\sqrt{541}\left(cm\right)\)
\(S_{ABCD}=\left(AB+CD\right)\div2\times AD=\frac{4+25}{2}\times10=145\left(cm^2\right)\)
5:
1: BE//AC
AC vuông góc BD
=>BE vuông góc BD
=>ΔBED vuông tại B
2:
DH=căn BD^2-BH^2=9cm
ΔBED vuông tại B có BH là đường cao
nên BD^2=DH*DE
=>DE=15^2/9=25cm
BE=căn 25^2-15^2=20(cm)
Ta có :
AC vuông BD mà AC // BE
Suy ra: BE vuông DB
BH=\(\sqrt{BD^2-DH^2}=\sqrt{92,16}=9,6\)
Áp dụng hệ thức lượng trong tam giác vuông DBE ta được
\(BH^2=DH.HE\Leftrightarrow92,16=7,2.HE\Leftrightarrow HE=12.8\)
Vậy DE=HE+DH=20
Diện tích ABCD=1/2BH(AB+DC)=1/2BH(CE+DC)=96
Vậy là xong. Bạn có rảnh thì xem giải tiếp mình vài câu hỏi mik gửi lên giùm.
CẢM ƠN BẠN!