Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều rộng là x
Chiều dài là x+8
Theo đề, ta có: \(\left(x+3\right)\cdot\dfrac{6}{5}\left(x+8\right)=x\left(x+8\right)+120\)
\(\Leftrightarrow\dfrac{6}{5}\left(x^2+11x+24\right)=x^2+8x+120\)
\(\Leftrightarrow\dfrac{6}{5}x^2+\dfrac{66}{5}x+\dfrac{144}{5}-x^2-8x-120=0\)
\(\Leftrightarrow x^2\cdot\dfrac{1}{5}+\dfrac{26}{5}x-\dfrac{456}{5}=0\)
=>x=12
Vậy: Chiều rộng ban đầu là 12m
Chiều dài ban đầu là 20m
Gọi chiều rộng là x
Chiều dài là x+8
Theo đề, ta có: 1/5(x+8)(x+3)=x(x+8)+120
=>x=12
=>CHiều rộng và chiều dài ban đầu lần lượt là 12m và 20m
gọi chiều dài thửa ruộng là x(m) chiều rộng là y(m) ( x,y>o)
diện tích thửa ruộng là x.y (m2)
nếu tăng chiều dài thêm 2 và tăng chiều rộng thêm 3 thì diện tích thửa ruộng lúc này là (x+2)(y+3)=100+xy
nếu cùng giảm cả chiều dài và chiều rộng là 2m thì diện tích lúc này là (x-2)(y-2)=68-xy
từ đó ta tìm được diện tích là 308m2
Gọi c dài c rộng của mảnh vườn là x , y (m ) , ( x>Y>0)
Chu vi mảnh vườn là: 2 ( x+y ) = 34 (m)
Diện tích trước khi tăng là : xy(m2)
Giúp tôi giải toán Maii Tômm (Libra)Trả lời1 Đánh dấu29/07/2015 lúc 21:30
Một mảnh vườn có chu vi là 34m. Nếu tăg chiều dài 3m ,chiều rộng giảm 2m thì diện tích tăng 45m2. Tính chiều dài, chiều rộng của mảnh vườn
Toán lớp 8Lập phương trình Kunzy Nguyễn 29/07/2015 lúc 21:39Gọi c.dài , c.rộng mảnh vườn là x , y(m) ,(x>y>0)
Chu vi mảnh vườn là :2(x+y)=34 (m)
Diện tích trc khi tăng là : xy(m2)
Diện tích sau khi tăng là (x+3)(y+2) (m2)
Theo bài ra ta có ; 2(x+y)=34 và (x+3)(y+2)-xy=45
<=> 2x+2y=34 và 2x+3y=39
<=> x+y=17 và y=15
<=>x=12 và y =5
Vậy ...........
Đúng 1 Maii Tômm (Libra) đã chọn câu trả lời này.Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có hệ phương trình:
a-b=9 và (a+2)(b+1)=ab+50
=>a-b=9 và a+2b=48
=>a=22 và b=13
Gọi chiều dài,chiều rộng của mảnh vườn lần lượt là a,b(m) \(\left(a>b>0\right)\)
Theo đề: \(\left\{{}\begin{matrix}ab=80\\\left(a-2\right)\left(b+3\right)=80+32=112\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}ab=80\left(1\right)\\ab+3a-2b-6=112\left(2\right)\end{matrix}\right.\)
Thế (1) vào (2): \(\Rightarrow3a-2b=38\Rightarrow3a=2b+38\)
Ta có: \(3ab=3.80=240\Rightarrow b\left(2b+38\right)=240\Rightarrow2b^2+38b-240=0\)
\(\Rightarrow\left(b-5\right)\left(b+24\right)=0\) mà \(b>0\Rightarrow b=5\Rightarrow a=16\)
Bài giải
Gọi chiều dài là x(m)
Gọi chiều rộng là y(m)
Diện tích mảnh vườn ban đầu là: x.y=80 (m2) (1)
Diện tích mảnh vườn khi thay đổi chiều dài, chiều rộng là: (x-2).(y+3) = 112 (m2) (2)
từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}xy=80\\\left(x-2\right)\left(y+3\right)=112\end{matrix}\right.\)
từ (1) => x= \(\dfrac{80}{y}\)
Thay x= \(\dfrac{80}{y}\) vào (2) => x=16 ; y = 5
Vậy...............................
Gọi chiều rộng của mảnh đất ban đầu là x (m) với x>1
Chiều dài ban đầu của mảnh đất: \(x+3\) (m)
Diện tích ban đầu của mảnh đất: \(x\left(x+3\right)\)
Chiều dài lúc sau: \(x+3+2=x+5\left(m\right)\)
Chiều rộng lúc sau: \(x-1\) (m)
Diện tích lúc sau: \(\left(x-1\right)\left(x+5\right)\)
Do diện tích mảnh đất ko đổi nên ta có pt:
\(x\left(x+3\right)=\left(x-1\right)\left(x+5\right)\)
\(\Leftrightarrow x^2+3x=x^2+4x-5\)
\(\Leftrightarrow x=5\left(m\right)\)
Vậy mảnh đất ban đầu rộng 5m, dài 8m
Gọi chiều rộng là x
Chiều dài là 60-x
Theo đề, ta có: (63-x)(x+5)=x(60-x)+265
\(\Leftrightarrow63x+315-x^2-5x=60x-x^2+265\)
=>58x+315=60x+265
=>-2x=-50
=>x=25
Vậy: Chiều rộng là 25m
Chiều dài là 35m
Gọi chiều dài của mảnh đất hcn là x(m),chiều rộng của mảnh đất hcn là y(m) (0<y<x).
Diện tích ban đầu của mảnh đất đó là : xy(m2).
Sau khi tăng chiều dài 2m và chiều rộng thêm 5m thì diện tích mới của mản đất đó là:(x+2)(y=5) (m2). (1)
Vì nếu tăng chiều dài 2m và chiều rộng thêm 5m thì diện tích tăng thêm 120m2,nên ta có pt:(x+2)(y=5) -xy=120.
Sau khi giảm chiều dài 3m và chiều rộng đi 2m thì diện tích của mảnh đất đó là: (x-3)(y-2) (m2).
Vì Nếu giảm chiều dài 3m và chiều rộng đi 2m thì diện tích giảm 60m2,nên ta có pt : xy-(x-3)(y-2)=60. (2)
- Còn lại hệ pt tự giải nốt nhé