Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
ABCD là hình vuông với DC=2R=4cm từ đó Ad=4cm
Từ đó: V H i n h = S d a y . A D = π 2 2 .4 = 16 π c m 2 .
S A B C D = 8 a 2 ⇒ 2 a . h = 8 a 2 ⇔ h = 4 a
Diện tích xung quanh của hình trụ:
S x q = 2 πRh = 2 π . a . 4 a = 8 πa 2
Thể tích khối trụ
V t r ụ = πR 2 h = πa 4 . 4 a = 4 πa 3
Chọn đáp án C.
Đáp án C
Phương pháp:
Diện tích xung quanh của hình trụ và thể tích khối trụ
Cách giải: Mặt phẳng qua trục cắt hình trụ theo thiết diện là hình chữ nhật có một cạnh là đường kính đáy và một cạnh là chiều cao của hình lăng trụ.
Gọi h là chiều cao của hình trụ ta có
Vậy diện tích xung quanh của hình trụ và thể tích khối trụ
Đáp án D
Bán kính đáy hình trụ bằng 2a. Mặt phẳng đi qua trục cắt hình trụ theo thiết diện là hình vuông Þ Chiều cao của hình trụ bằng đường kính đáy = 4a Thế tích khối trụ là: π 2 a 2 .4 a = 16 π a 3
Chọn C.
Phương pháp
Công thức tính diện tích xung quanh hình trụ S x q = 2 π R h
Cách giải:
Do thiết diện là hình vuông cạnh a nên bán kính đáy bằng a 2 và chiều cao h = a.
Diện tích xunh quanh: S = 2 π . a 2 . a = π a 2
Đáp án D
Ta có: