Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có m<n
<=>5m<5n
_____________________________
Có m<n
<=>-3m>-3n
(3n-5)(2n+1)+7(n-1)=6n2-7n-5+7n-7
=6n2-12
=3(2n-4)
=>(3n-5)(2n+1)+7(n-1) chia hết cho 3, với mọi n
(n-4)(5n+3)-(n+1)(5n-2)+4=5n2-17n-12-(5n2+3n-2)
=5n2-17n-12-5n2-3n+2
=-20n-10
=5(-4n-2)
=>(n-4)(5n+3)-(n+1)(5n-2)+4 chia hết cho 5, với mọi n
4m2+m=5m2+n suy ra m= 5m2+n-4m2= m2+n
ta có m-n
m2+n -n=m2 là một số chính phương
\(a,n^5-5n^3+4n=n\left(n^4-5n^2+4\right)=n\left(n^4-n^2-4n^2+4\right)=n\left(n^2-1\right)\left(n^2-4\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\)(chia hết cho 1;2;3;4;5)\(\Rightarrowđpcm\)
b,
A = n^3-3n^2-n+3 = n^2(n - 3) - (n-3) = (n -3)(n-1)(n+1)
vì n lẻ nên:
(n-1)(n+1) là tích của 2 số chẵn liên tiếp chia hết cho 8
(n - 3) là số chẵn chia hết cho 2
=> A chia hết cho 16(*)
mặt khác:
A = n^3-3n^2-n+3 = n^3 - n - 3(n^2 - 1) = n(n+1)(n-1) - 3(n^2-1)
xét các trường hợp:
n = 3k => n(n+1)(n-1) chia hết cho 3 => A chia hết cho 3
n = 3k + 1 => (n -1) chia hết cho 3 => A chia hết cho 3
n = 3k + 2 => (n+1) = 3k + 3 chia hết cho 3 => A chia hết cho 3
=> A chia hết cho 3 (**)
(*) và (**) => A chia hết cho 3.16 = 48 (3,16 là 2 số nguyên tố cùng nhau).
Với n=1
S=2^3+2^2+1=13 không chia hết cho 7
Bạn kiểm tra lại đề xem
A=n^3+3n^2+5n+3
=n^3+5n+3n^2+3
=n(n^2+5)+3(n^2+1)
do 3(n^2+1) luôn chia hết cho 3 nên mik chỉ xét n(n^2+5)
đặt n=3k suy ra 3k((3k)^2+5) luôn chia hết cho 3 suy ra A chia hết cho 3
đặt n=3k+1 suy ra (3k+1)((3k+1)^2+5)=(3k+1)(9k^2+6k+1+5)=(3k+1)(9k^2+6k+6)=(3k+1)3(3k^2+2k+2) chia hết cho 3 suy ra A chia hết cho 3
đặt n=3k+2 suy ra (3k+2)((3k+2)^2+5)=(3k+2)(9k^2+12k+4+5)=(3k+2)(9k^2+12k+9)=(3k+2)3(3k^2+4k+3) chia hết cho 3 suy ra A chia hết cho 3
vậy A luôn chia hết cho 3 với mọi giá trị của n
Gọi d là UCLN của \(3n^2+5n+1\left(and\right)8n^2+7n+1\)
\(\Rightarrow\hept{\begin{cases}3n^2+5n+1⋮d\\8n^2+7n+1⋮d\end{cases}=>8\left(3n^2+5n+1\right)-3\left(8n^2+7n+1\right)⋮d}\)
\(\Rightarrow24n^2+40n+8-24n^2-21n-3⋮d\)
\(=>19n-5⋮d\)
do 19 zà 5 là số nguyên tố =>không chia hết cho d
=>p.số tối giản