K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

ta có : \(M=2cot37.cot53+sin^228\dfrac{3tan54}{cot36}+sin^262\)

\(=2.cot37.cot\left(90-37\right)+sin^228\dfrac{3tan54}{cot\left(90-54\right)}+sin^262\)

\(=2.cot37.tan37+sin^228\dfrac{3tan54}{tan54}+sin^262\)

\(=2+3sin^228+sin^262=2+2sin^228+sin^228+sin^2\left(90-28\right)\)

\(=2+2sin^228+sin^228+cos^228=3+2sin^228\)

a) Ta có: \(A=2\cdot\cot37^0\cdot\cot53^0+\sin^228^0+\sin^262^0-\dfrac{3\cdot\tan54^0}{\cot36^0}\)

\(=2\cdot\tan53^0\cdot\cot53^0+\sin^228^0+\cos^228^0-\dfrac{3\cdot\tan54^0}{\tan54^0}\)

\(=2+1-3\)

=0

21 tháng 10 2019

a) \(A=2sin30^o-2cos60^o+tan45^o\)

\(=2\left(sin30^o-có60^o\right)+1\)

\(=2\left(sin30^o-sin30^o\right)+1=1\)

b) \(B=3sin^225^o+3sin^265^o-tan35^o+cot55^o-\frac{cot32^o}{tan58^o}\)

\(=3\left(sin^225^o+cos^225^o\right)-\left(tan35^o-cot55^o\right)-\frac{cot32^o}{cot32^o}\)

\(=3-\left(tan35^o-tan35^o\right)-1\)

\(=2\)

c) \(C=tan67^o-cos23^o+cos^216^p+cos^274^o-\frac{4cot37^o}{2tan53^o}\)

= \(tan67^o-tan67^o+sin^274^o+cos^274^o-\frac{4cot37^o}{2cot37^o}\)

\(=1-2=-1\)

d) \(D=2cot37^ocot53^o+sin^228^o-\frac{3tan54^o}{cot36^o}+sin^262^o\)

\(=2cot37^otan37^o+sin^228^o+cos^228^o-\frac{3tan54^o}{tan54^o}\)

\(=2+1-3=0\)

Mấy bài kiểu này bạn chỉ cần áp dụng tính chất tỉ số lượng giác của hai góc phụ nhau và các hệ thức trong bài tập số 14 (SGK - Tr.77) là sẽ ra thôi ok

Chúc bạn học tốt nhé! haha

\(=2\cdot sin53^0\cdot cos53^0+1-3=sin106^0-2\)

3 tháng 1 2022

c

21 tháng 10 2021

\(ab\cdot\sqrt{\dfrac{a}{3b}}-a^2\sqrt{\dfrac{3b}{a}}\)

\(=a\sqrt{ab}-a^2\cdot\dfrac{\sqrt{3b}}{\sqrt{a}}\)

\(=a\sqrt{ab}-a\sqrt{a}\cdot\sqrt{3b}\)

\(=a\sqrt{ab}\left(1-\sqrt{3}\right)\)

\(\Leftrightarrow m=\dfrac{a\sqrt{ab}\left(1-\sqrt{3}\right)}{\sqrt{3ab}}=\dfrac{a\left(\sqrt{3}-3\right)}{3}\)

7 tháng 12 2021

\(a,Sửa:M=\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\\ M=\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ b,M=\dfrac{\sqrt{a}-1}{\sqrt{a}}=1-\dfrac{1}{\sqrt{a}}< 1\left(\dfrac{1}{\sqrt{a}}>0\right)\\ c,M>0\Leftrightarrow\sqrt{a}-1>0\left(\sqrt{a}>0\right)\Leftrightarrow a>1\)