K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x_1-1}{5}=\dfrac{x_2-2}{4}=\dfrac{x_3-3}{3}=\dfrac{x_4-4}{2}=\dfrac{x_5-5}{1}\)

\(=\dfrac{\left(x_1-1\right)+\left(x_2-2\right)+\left(x_3-3\right)+\left(x_4-4\right)+\left(x_5-5\right)}{5+4+3+2+1}\)

\(=\dfrac{\left(x_1+x_2+x_3+x_4+x_5\right)-\left(1+2+3+4+5\right)}{15}\)

\(=\dfrac{30-15}{15}=1\)

\(\Rightarrow x_1=x_2=x_3=x_4=x_5=6\)

Vậy...

11 tháng 12 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x1-1}{5}\)=\(\dfrac{x2-2}{4}\)\(\dfrac{x3-3}{3}\)=\(\dfrac{x4-4}{2}\)=\(\dfrac{x5-5}{1}\)=\(\dfrac{x1-1+x2-2+x3-3+x4-4+x5-5}{5+4+3+2+1}\)=\(\dfrac{x1+x2+x3+x4+x5-\left(1+2+3+4+5\right)}{15}\)=\(\dfrac{30-15}{15}\)=\(\dfrac{15}{15}\)=1

\(\dfrac{x1-1}{5}\)=1 => x1-1=5 => x1 =6

\(\dfrac{x2-2}{4}\)=1 => x2-2=4 => x2 =6

\(\dfrac{x3-3}{3}\)=1 => x3-3=3 => x3 =6

\(\dfrac{x4-4}{2}\)=1 => x4-4=2 => x4 =6

\(\dfrac{x5-5}{1}\)=1 => x5-5=1 => x5 = 6

Vậy x1=x2=x3=x4=x5 =6

11 tháng 5 2016

Ta có x4+2x2+1=(x2+1)2

Vì x^2>=0 với mọi x

Suy ra (x2+1)2>=(0+1)2=1>0

Vậy đa thức M vô nghiệm

\(\dfrac{2x^5+x^4+3x^3-4x^2-14x+m+1}{x^2-2}\)

\(=\dfrac{2x^5-4x^3+x^4-2x^2+7x^3-14x-2x^2+4+m-3}{x^2-2}\)

\(=2x^2+x^2+7x-2+\dfrac{m-3}{x^2-2}\)

Đây là phép chia hết khi m-3=0

=>m=3

`@` `\text {dnammv}`

`a,`

`M(x)=3x^3+x^2+4x^4-x-3x^3+5x^4+x^2`

`= (4x^4+5x^4)+(3x^3-3x^3)+(x^2+x^2)-x`

`= 9x^4+2x^2-x`

 

`N(x)=-x^2-x^4+4x^3-x^2-5x^3+3x+1+x`

`=-x^4+(4x^3-5x^3)+(-x^2-x^2)+(3x+x)+1`

`= -x^4-x^3-2x^2+4x+1`

`b,`

`M(x)+N(x)=(9x^4+2x^2-x)+(-x^4-x^3-2x^2+4x+1)`

`= 9x^4+2x^2-x-x^4-x^3-2x^2+4x+1`

`= (9x^4-x^4)-x^3+(2x^2-2x^2)+(-x+4x)+1`

`= 8x^4-x^3+3x+1`

 

`N(x)-M(x)=(-x^4-x^3-2x^2+4x+1)-(9x^4+2x^2-x)`

`= -x^4-x^3-2x^2+4x+1-9x^4-2x^2+x`

`= (-x^4-9x^4)-x^3+(-2x^2-2x^2)+(4x+x)+1`

`= -10x^4-x^3-4x^2+5x+1`

`c,`

`P(x)=M(x)+N(x)`

`P(x)= 8x^4-x^3+3x+1`

Thay `x=-2`

`P(-2)= 8*(-2)^4-(-2)^3+3*(-2)+1`

`= 8*16+8-6+1`

`= 136-6+1=131`

17 tháng 4 2019

Nhận xét: Đa thức M(x) và N(x) đã sắp xếp theo lũy thừa giảm dần của biến.

+) M(x) + N(x)

= (x4 + 5x3 - x2 + x – 0,5) + (3x4 - 5x2 – x – 2,5)

= x4 + 5x3 - x2 + x – 0,5 + 3x4 - 5x2 – x – 2,5

= (x4 + 3x4) + 5x3 + (- x2 - 5x2) + (x – x) + (-0,5 - 2,5)

= 4x4 + 5x3 – 6x2 – 3

Vậy M(x) + N(x) = 4x4 + 5x3 – 6x2 – 3

+) M(x) – N(x)

= (x4 + 5x3 - x2 + x – 0,5) - (3x4 - 5x2 – x – 2,5)

= x4 + 5x3 - x2 + x – 0,5 - 3x4 + 5x2 + x + 2,5

= (x4 - 3x4) + 5x3 + (-x2 + 5x2) + (x + x) + (-0,5 + 2,5)

= -2x4 + 5x3 + 4x2 + 2x + 2

Vậy M(x) - N(x) = -2x4 + 5x3 + 4x2 + 2x + 2

5 tháng 1 2018

Nhận xét: Đa thức M(x) và N(x) đã sắp xếp theo lũy thừa giảm dần của biến.

+) M(x) + N(x)

= (x4 + 5x3 - x2 + x – 0,5) + (3x4 - 5x2 – x – 2,5)

= x4 + 5x3 - x2 + x – 0,5 + 3x4 - 5x2 – x – 2,5

= (x4 + 3x4) + 5x3 + (- x2 - 5x2) + (x – x) + (-0,5 - 2,5)

= 4x4 + 5x3 – 6x2 – 3

Vậy M(x) + N(x) = 4x4 + 5x3 – 6x2 – 3

+) M(x) – N(x)

= (x4 + 5x3 - x2 + x – 0,5) - (3x4 - 5x2 – x – 2,5)

= x4 + 5x3 - x2 + x – 0,5 - 3x4 + 5x2 + x + 2,5

= (x4 - 3x4) + 5x3 + (-x2 + 5x2) + (x + x) + (-0,5 + 2,5)

= -2x4 + 5x3 + 4x2 + 2x + 2

Vậy M(x) - N(x) = -2x4 + 5x3 + 4x2 + 2x + 2

a: \(M\left(x\right)=9x^4+2x^2-x-6\)

\(N\left(x\right)=-x^4-x^3-2x^2+4x+1\)

b: \(P\left(x\right)=8x^4-x^3+3x-5\)

\(Q\left(x\right)=10x^4+x^3+4x^2-5x-7\)

ko bt làm=))

 

21 tháng 5 2021

`M(x)=P(x)+Q(x)`

`=x^4-5x+2x^2+1+5x+x^2+5-3x^2+x^4`

`=2x^4+6`

Đặt `M(x)=0`

`<=>2x^4+6=0`

`<=>x^4=-3`(vô lý vì `x^4>=0`)

a) Ta có M(x)=P(x)+Q(x)

                     =(\(x^4-5x+2x^2+1\))+(\(5x+x^2+5-3x^2+x^4\))

                     =\(x^4-5x+2x^2+1\)+\(5x+x^2+5-3x^2+x^4\)

                     =(\(x^4+x^4\))+(-5x+5x)+(\(2x^2\)+\(x^2\)-\(3x^2\))+(1+5)

                     =\(2x^4\)+6

Vậy M(x)=\(2x^4+6\)

b)Vì 2x\(^4\)\(\ge\) 0 với \(\forall\) x

  nên \(2x^4+6\)  \(\ge\)0 với \(\forall\)x

\(\Rightarrow\)M(x) \(\ge\) 0 với \(\forall\) x

Vậy M(x) vô nghiệm