\(\sqrt{\dfrac{x-1}{x+2}}\)

Tìm giá trị của x để căn thức sau có nghĩa

giả...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2021

`ĐK:(x-1)/(x+2)>=0`

`TH1:`

`x-1>=0` và `x+2>0`

`<=>x>=1` và `x> -2`

`<=>x>=1`

`TH2:

`x-1\le0` và `x+2<0`

`<=>x\le1` và `x< -2`

`<=>x< -2`

Vậy `x>=1` hoặc `x< -2` thì căn thức có nghĩa

ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x< -2\end{matrix}\right.\)

22 tháng 8 2021

Vì `2>0` và `x^{2}>0` ( Với `x\ne0` )

`->(2)/(x^{2})>0`

Vậy với mọi giá trị của `x` thì căn thức đều có nghĩa ( `x\ne0` )

ĐKXĐ: \(x\ne0\)

r: ĐKXĐ: \(x\ge-2\)

22 tháng 8 2021

Để \(\sqrt{\dfrac{1}{3-2x}}\) có nghĩa

Khi\(\dfrac{1}{3-2x}\ge0\)

\(\Leftrightarrow3-2x>0\)

\(\Leftrightarrow-2x< -3\)

\(\Leftrightarrow x>\dfrac{3}{2}\)

22 tháng 8 2021

undefined

a: ĐKXĐ: \(x\ne\dfrac{3}{2}\)

b: ĐKXĐ: \(x\in R\)

20 tháng 8 2017

theo định lí Vi-Et nha bạn

15 tháng 5 2017

Dự đoán \(x=y=z=1\) ta tính được \(A=6+3\sqrt{2}\)

Ta sẽ c/m nó là GTLN của A

Thật vậy, ta cần chứng minh \(Σ\left(2+\sqrt{2}-2\sqrt{x}-\sqrt{1+x^2}\right)\ge0\)

\(\LeftrightarrowΣ\left(\frac{2\left(1-x\right)}{1+\sqrt{x}}+\frac{1-x^2}{\sqrt{2}+\sqrt{1+x^2}}\right)\ge0\)

\(\LeftrightarrowΣ\left(x-1\right)\left(1+\frac{1}{\sqrt{2}}-\frac{2}{1+\sqrt{x}}-\frac{x+1}{\sqrt{2}+\sqrt{1+x^2}}\right)+\left(1+\frac{1}{\sqrt{2}}\right)\left(3-x-y-z\right)\ge0\)

\(\LeftrightarrowΣ\left(x-1\right)^2\left(\frac{1}{\left(1+\sqrt{x}\right)^2}-\frac{x+1}{\sqrt{2}\left(\sqrt{2}+\sqrt{1+x^2}\right)\left(\sqrt{2}x+\sqrt{1+x^2}\right)}\right)+\left(1+\frac{1}{\sqrt{2}}\right)\left(3-x-y-z\right)\ge0\)

BĐT cuối đủ để chứng minh 

\(\sqrt{2}\left(\sqrt{2}+\sqrt{1+x^2}\right)\left(\sqrt{2}x+\sqrt{1+x^2}\right)\ge\left(x+1\right)\left(1+\sqrt{x}\right)^2\)

Đặt \(1+x=2k\sqrt{x}\). Hence, theo Cauchy-Schwarz:

\(\sqrt{2}\left(\sqrt{2}+\sqrt{1+x^2}\right)\left(\sqrt{2}x+\sqrt{1+x^2}\right)\)

\(=\sqrt{2}\left(\sqrt{2}+\frac{1}{\sqrt{2}}\sqrt{2\left(1+x^2\right)}\right)\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\sqrt{2\left(1+x^2\right)}\right)\)

\(\ge\sqrt{2}\left(\sqrt{2}+\frac{x+1}{\sqrt{2}}\right)\left(\sqrt{2}x+\frac{x+1}{\sqrt{2}}\right)\)

\(=\frac{1}{\sqrt{2}}\left(x+3\right)\left(3x+1\right)=\frac{1}{\sqrt{2}}\left(3x^2+10x+3\right)\)

\(=\frac{1}{\sqrt{2}}\left(3\left(4k^2-2\right)x+10x\right)2\sqrt{2}x\left(3k^2+1\right)\)

Mặt khác \(\left(x+1\right)\left(1+\sqrt{x}\right)^2=\left(x+1\right)\left(x+1+2\sqrt{x}\right)\)

\(=2k\left(2k+2\right)x=4k\left(k+1\right)x\). Có nghĩa là ta cần phải c/m

\(3k^2+1\ge\sqrt{2}k\left(k+1\right)\Leftrightarrow\left(3-\sqrt{2}\right)k^2-2\sqrt{k}+1\ge0\)

Nó đúng theo AM-GM

\(\left(3-\sqrt{2}\right)k^2-\sqrt{2}k+1\ge\left(2\sqrt{3-\sqrt{2}}-\sqrt{2}\right)k\ge0\)

Hơi đẹp nhỉ nhưng xong r` đó :D

14 tháng 5 2017

bunyakovsky:

\(\left(\sqrt{1+x^2}+\sqrt{2x}\right)^2\le2\left(x+1\right)^2\)

\(\Leftrightarrow\sqrt{1+x^2}+\sqrt{2}.\sqrt{x}\le\sqrt{2}\left(x+1\right)\) 

tương tự :phần còn lại + thêm với\(\left(2-\sqrt{2}\right)\left(x+y+z\right)\)

22 tháng 8 2021

Để căn thức có nghĩa thì:

\(\sqrt{\dfrac{1}{-1+x}}>0\) và \(-1+x\ne0\)

\(\Leftrightarrow x>1\)

22 tháng 8 2021

\(ĐKXĐ\left\{{}\begin{matrix}\dfrac{1}{-1+x}\ge0\\-1+x\ne0\end{matrix}\right.\)   ( Tử và mẫu cùng dấu )

   Mà 1 > 0 \(\Rightarrow-1+x>0\)

                  \(\Leftrightarrow\)          \(x>1\)