K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2016

TH1: \(x\ge3\)

=>x-3+x+3=4

=>2x=4

=>x=2 (loại)

TH2: \(x<-3\)

=>3-x-x-3=4

=>-2x=4

=>x=-2(loại)

TH3: \(-3\le x<3\)

=>3-x+x+3=4

=>6=4(vô lí)

Vậy không có giá trị nào của x thỏa mãn lx-3l+lx+3l=4 

1 tháng 2 2017

Ta thấy :

|x + 1| ≥ 0

|x + 3| ≥ 0

.......

|x + 97| ≥ 0 

|x + 99| ≥ 0

Cộng vế với vế ta được :

|x + 1| + |x + 3| + ... + |x + 97| + |x + 99| ≥ 0

Hay 51x ≥ 0 Mà 51 > 0 => x ≥ 0

=> |x + 1| + |x + 3| + ... + |x + 97| + |x + 99| = x + 1 + x + 3 + .... + x + 97 + x + 99

= 50x + 2500 = 51x

=> x = 2500

1 tháng 2 2017

Ta có :

\(\left|x+1\right|\ge0\)

\(\left|x+3\right|\ge0\)

\(\left|x+5\right|\ge0\)

.........

\(\left|x+97\right|\ge0\)

\(\left|x+99\right|\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+3\right|+\left|x+5\right|+......+\left|x+97\right|+\left|x+99\right|\ge0\)

\(\Rightarrow51x\ge0\)

Mặt khác \(51>0\)

Nên \(x\ge0\)

=> |x + 1| + |x + 3| + |x + 5| + ...... + |x + 99|

= x + 1 + x + 3 + x + 5 + ....... + x + 99 = 51x

=> 50x + (1 + 3 + 5 + ..... + 99) = 51x

Áp dụng công thức tính dãy số ta có :

1 + 3 + 5 + .... + 99 = 2500

=> 50x + 2500 = 51x

=> x = 2500

2 tháng 12 2015

áp dụng tính chất : lx| = |-x|

|x|+|y|\(\ge\)|x+y|

ta được lx-1l+ lx-2l +lx-3l+ lx-4l \(\ge\)|x-1+2-x+x-3-x+4|=4

vậy giá trị nhỏ nhất là 4

dấu = xảy ra khi tất cả cùng dấu

cậu nên mua quyển sách mình nói nêu là dân chuyên toán

2 tháng 12 2015

Thanh Nguyễn Vinh chi tiết giùm

23 tháng 5 2021

2450 nhé

23 tháng 5 2021

còn cái nịtッ

15 tháng 12 2019

ta có : 

l2x+3l-lx-3l=0 

l2x+3l=lx-3l

=> x=0

16 tháng 12 2019

giai chi tiet

6 tháng 8 2019

Ta đã biết với mọi x,y thuộc Q thì \(\left|x+y\right|\le\left|x\right|+\left|y\right|\).

Đẳng thức xảy ra khi \(xy\ge0\)

Ta có : \(A=\left|x-3\right|+\left|x-2\right|=\left|x-3\right|+\left|2-x\right|\ge\left|x-3+2-x\right|=\left|-1\right|=1\)

Vậy \(A\ge1\), A đạt giá trị nhỏ nhất là 1 khi \(2\le x\le3\)

Phải không ta???

6 tháng 8 2019

Ta có A=|x-3|+|x-2|

            = |3-x|+|x-2|

         \(\ge\)\(\left|3-x+x-2\right|\)=|1|=1

=> GTNN của A=1 \(\Leftrightarrow\left(3-x\right)\left(x-2\right)\ge0\)

                              \(\Leftrightarrow2\le x\le3\)

 Vậy Min A=1 khi \(2\le x\le3\)

  • tk mk nha
  • *****CHÚC BẠN HỌC GIỎI*****
30 tháng 3 2015

mình nghĩ x là phân số thôi ,chứ nếu x nguyên thì x rỗng.