Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: BC=căn 15^2+20^2=25cm
AH=15*20/25=12cm
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
=>DE=AH=12cm
b: ΔAHB vuông tại H có HD vuông góc AB
nên AD*AB=AH^2
ΔAHC vuông tại H có HE vuông góc AC
nên AE*AC=AH^2
=>AD*AB=AE*AC
c: góc IAC+góc AED
=góc ICA+góc AHD
=góc ACB+góc ABC=90 độ
=>AI vuông góc ED
4:
a: góc BDH=góc BEH=góc DBE=90 độ
=>BDHE là hình chữ nhật
b: BDHE là hình chữ nhật
=>góc BED=góc BHD=góc A
Xét ΔBED và ΔBAC có
góc BED=góc A
góc EBD chung
=>ΔBED đồng dạng với ΔBAC
=>BE/BA=BD/BC
=>BE*BC=BA*BD
c: góc MBC+góc BED
=góc C+góc BHD
=góc C+góc A=90 độ
=>BM vuông góc ED
a: \(2x^2\left(3xy+x^2-2y^2\right)\)
\(=6x^3y+2x^4-4x^2y^2\)
b: \(\dfrac{1}{3}x^2y^3\left(2x-3y+1\right)\)
\(=\dfrac{2}{3}x^3y^3-x^2y^4+\dfrac{1}{3}x^2y^3\)
h: \(\left(x-1\right)\left(x+1\right)\left(2x-3\right)\)
\(=\left(x^2-1\right)\left(2x-3\right)\)
\(=2x^3-3x^2-2x+3\)
Bài 1:
a) \(5x^2y-10xy^2=5xy\left(x-y\right)\)
b) \(4x\left(2y-z\right)+7y\left(z-2y\right)=\left(4x-7y\right)\left(2y-z\right)\)
c) \(5x^2y^3-25x^3y^4+10x^3y^3=5x^2y^3\left(1-5xy+2x\right)\)
d) \(12x^2y-18xy^2-30y^2=6y\left(2x^2-3xy-5y\right)\)
e) \(y\left(a-b\right)-7y^2\left(b-a\right)=\left(y+7y^2\right)\left(a-b\right)\)
f) \(27x^2\left(y-1\right)-9x^3\left(1-y\right)=\left(27x^2+9x^3\right)\left(y-1\right)=9x^2\left(3+x\right)\left(y-1\right)\)
Bài 17:
1) \(3^2-x^2=\left(3-x\right)\left(3+x\right)\)
2) \(x^2-36=\left(x-6\right)\left(x+6\right)\)
3) \(y^2-1=\left(y-1\right)\left(y+1\right)\)
4) \(25-y^2=\left(5-y\right)\left(5+y\right)\)
5) \(9x^2-1=\left(3x-1\right)\left(3x+1\right)\)
6) \(\dfrac{1}{25}-4x^2=\left(\dfrac{1}{5}-2x\right)\left(\dfrac{1}{5}+2x\right)\)
7) \(9x^2-y^2=\left(3x-y\right)\left(3x+y\right)\)
8) \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
Bài 18:
1) \(\left(x-5\right)\left(x+5\right)=x^2-25\)
2) \(\left(4-x\right)\left(4+x\right)=16-x^2\)
3) \(\left(x-\dfrac{2}{3}\right)\left(x+\dfrac{2}{3}\right)=x^2-\dfrac{4}{9}\)
4) \(\left(1+2x\right)\left(1-2x\right)=1-4x^2\)
5) \(-\left(2x+3\right)\left(3-2x\right)=\left(2x+3\right)\left(2x-3\right)=4x^2-9\)
6) \(-\left(5x-3\right)\left(3+5x\right)=\left(3-5x\right)\left(3+5x\right)=9-25x^2\)
7) \(-\left(3x-\dfrac{2}{5}\right)\left(3x+\dfrac{2}{5}\right)=-\left(9x^2-\dfrac{4}{25}\right)=\dfrac{4}{25}-9x^2\)
8) \(-\left(2x-\dfrac{2}{3}\right)\left(2x+\dfrac{2}{3}\right)=-\left(4x^2-\dfrac{4}{9}\right)=\dfrac{4}{9}-4x^2\)
\(a,\dfrac{11x}{2x-5}+\dfrac{x-30}{2x-5}=\dfrac{11x+x-30}{2x-5}=\dfrac{12x-30}{2x-5}=\dfrac{6\left(2x-5\right)}{2x-5}=6\)
\(b,\dfrac{3x^2-1}{2x}+\dfrac{x^2+1}{2x}=\dfrac{3x^2-1+x^2+1}{2x}=\dfrac{4x^2}{2x}=2x\)
\(c,\dfrac{3}{2x-5}+\dfrac{-2}{2x+5}+\dfrac{-20}{4x^2-25}=\dfrac{3\left(2x+5\right)}{\left(2x-5\right)\left(2x+5\right)}-\dfrac{2\left(2x-5\right)}{\left(2x-5\right)\left(2x+5\right)}-\dfrac{20}{\left(2x-5\right)\left(2x+5\right)}=\dfrac{6x+15-4x+10-20}{\left(2x-5\right)\left(2x+5\right)}=\dfrac{2x+5}{\left(2x-5\right)\left(2x+5\right)}=\dfrac{1}{2x-5}\)
\(d,\dfrac{x-2}{x-1}+\dfrac{x-3}{x+1}+\dfrac{4-2x^2}{x^2-1}=\dfrac{\left(x-2\right)\left(x+1\right)+\left(x-3\right)\left(x-1\right)+4-2x^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2-2x+x-2+x^2-3x-x+3+4-2x^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{-5x+5}{\left(x-1\right)\left(x+1\right)}=\dfrac{-5\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{-5}{x-1}\)
\(e,\dfrac{x+1}{x-1}+\dfrac{1-x}{x+1}+\dfrac{4}{x^2-1}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}+\dfrac{4}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2+2x+1-x^2+2x-1+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{4\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x-1}\)
Bài 4:
Ta có: \(\left(n+2\right)^2-\left(n-2\right)^2\)
\(=n^2+4n+4-n^2+4n-4\)
\(=8n⋮8\)
Bài 1:
a: \(x^2-12x+36=\left(x-6\right)^2\)
b: \(4x^2+12x+9=\left(2x+3\right)^2\)
c: \(\dfrac{1}{4}x^2-5xy+25y^2=\left(\dfrac{1}{2}x-5y\right)^2\)
d: \(\left(x-5\right)^2-16=\left(x-5-4\right)\left(x-5+4\right)=\left(x-9\right)\left(x-1\right)\)
e: \(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3-x\right)=\left(x+2\right)\left(8-x\right)\)
g: \(\left(7x-4\right)^2-\left(2x+1\right)^2\)
\(=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)\)
\(=\left(5x-5\right)\left(9x-3\right)\)
\(=15\left(x-1\right)\left(3x-1\right)\)
f: \(8x^3+\dfrac{1}{27}=\left(2x+\dfrac{1}{3}\right)\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)\)
g: \(49\left(x-4\right)^2-9\left(x+2\right)^2\)
\(=\left(7x-28-3x-6\right)\left(7x-28+3x+6\right)\)
\(=\left(4x-34\right)\left(10x-24\right)\)
\(=4\left(2x-17\right)\left(5x-12\right)\)
bài 1
a)
=(x+y-x+y)(x+y+x-y)
=2x.2y
=4xy
b)
B=(x+y-x+y)2=4y2
c)
=(x+y-x+y)[(x+y)2+(x+y)(x-y)+(x-y)2]-2y3
=2y(\(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\))-2y3
=\(2y\left(3x^2+y^2\right)-2y^3=6x^2y+2y^3-2y^3=6x^2y\)
Bài 3:
a: Ta có: \(A=\left(x+y\right)^2-\left(x-y\right)^2\)
\(=x^2+2xy+y^2-x^2+2xy-y^2\)
=4xy
b: ta có: \(B=\left(a+b\right)^3+\left(a-b\right)^3-2a^3\)
\(=a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3-2a^3\)
\(=6ab^2\)
c: Ta có: \(C=9^8\cdot2^8-\left(18^4-1\right)\left(18^4+1\right)\)
\(=18^8-18^8+1\)
=1