Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA đồng dạng với ΔABC
b: Xét ΔABE vuông tại A và ΔACB vuông tại A có
góc ABE=góc ACB
Do đó:ΔABE đồng dạng với ΔACB
Suy ra: AB/AC=AE/AB
hay \(AB^2=AE\cdot AC\)
a: Xét ΔBAC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
hay \(AH^2=HD\cdot HC\)
a)Xét tam giác HAC và tam giác ABC có :
Góc AHC = góc BAC ( = 90o)
Góc BCA chung
⇒ Tam giác HAC ~ Tam giác ABC ( TH3 )
b) Xét tam giác AHD và tam giác ABH có :
Góc HAB chung
Góc ADH = Góc AHB ( = 90o)
⇒ Tam giác AHD ~ Tam giác ABH ( TH3)
⇒ \(\dfrac{AH}{AB}=\dfrac{AD}{AH}\)
⇒ AH2 = AB.AD
c) Xét tam giác AEH và tam giác AHC có :
Góc HAC chung
Góc AEH = góc AHC ( = 90o)
⇒ Tam giác AEH ~ Tam giác AHC ( TH3)
⇒ \(\dfrac{AE}{AH}=\dfrac{AH}{AC}\)
⇒ AH2 = AE.AC
Mà : AH2 = AD.AB ( Câu b)
⇒ AE.AC = AD.AB
d) Do : AE.AC = AD.AB ( Câu c)
⇒ \(\dfrac{AE}{AD}=\dfrac{AC}{AB}\)
Xét tam giác AED và tam giác ACB có :
Góc BAC chung
\(\dfrac{AE}{AD}=\dfrac{AC}{AB}\) ( cmt)
⇒Tam giác AED ~ Tam giác ACB ( TH2)
⇒ \(\dfrac{S_{AED}}{S_{ACB}}=\left(\dfrac{AE}{AC}\right)^2\)
P/S : Hình như thiếu dữ kiện , chưa cho AH nên ko ra số cụ thể
â)xét tam giác hac và tam giác abc có:
góc c chung
góc ahc= góc bac=90 độ
suy ra tam giác hac đồng dạng với tam giác abc(g.g)
b)xét tam giác ahb và tam giác adh có
góc ahb= góc adh=90 độ
góc a chung
suy ra tam giác ahb đồng dạng với tam giác adh(g.g)
ta có:ah^2=ab.ad
ACDF is a rectangle
\(S_{MAC}=S_{MCD}\) => (distance from M to AC) = CD/AC * (distance from M to CD) => \(M\in\)a straight line d passed C
Because FA/FD = CD/AC => FA = CD/AC * FD => \(F\in d\)
So \(M\in CF\)
tìm n nguyên dương sao cho n+1 , 6n+1 và 20n+1 là số chính phương.