Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x+1}{x-4}>0\)
Thì sảy ra 2 trường hợp
Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4
Vậy x > 4
Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4
Vậy x < (-1) .
Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)
Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)
Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)
a) \(\left(\frac{5}{7}x-\frac{1}{4}\right)\left(\frac{-3}{4}x+\frac{1}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{5}{7}x-\frac{1}{4}=0\\\frac{-3}{4}x+\frac{1}{2}=0\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{5}{7}x=\frac{1}{4}\\\frac{-3}{4}x=\frac{-1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{7}{20}\\x=\frac{2}{3}\end{cases}}\)
Vậy \(x=\frac{7}{20}\) hoặc x=\(\frac{2}{3}\)
b) \(\left(\frac{4}{5}+x\right)\left(x-\frac{8}{13}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{4}{5}+x=0\\x-\frac{8}{13}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-4}{5}\\x=\frac{8}{13}\end{cases}}\)
Vậy x=-4/5 hoặc x=8/13
c) \(\left(2x-\frac{1}{2}\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{2}=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=3\end{cases}}\)
Vậy x=1/4 hoặc x=3
\(x+\frac{7}{2}x+x=\frac{1}{2}\)
\(2x+\frac{7}{2}x=\frac{1}{2}\)
\(\left(2+\frac{7}{2}\right)x=\frac{1}{2}\)
\(\frac{11}{2}x=\frac{1}{2}\)
\(x=\frac{1}{2}:\frac{11}{2}\)
\(x=\frac{1}{11}\)
bạn ơi trả lời được câu này kông
( x + 1 ) + ( x - 3 ) + ( x + 5 ) + ............ + ( x +9) = 35
Chỗ dấu "..." bạn không cần ghi.Mình viết vậy cho dễ nhìn. Bài này có một lời giải khá độc đáo trong sách nâng cao của mình.
a) Số thừa số âm ở VT chẵn.
Mà \(x-\frac{2}{5}< x+\frac{3}{7}< x+\frac{3}{4}\) nên
\(\orbr{\begin{cases}x-\frac{2}{5}>0\\x+\frac{3}{7}< 0..và...x+\frac{3}{4}>0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x>\frac{2}{5}\\x< -\frac{3}{7}...và...x>-\frac{3}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}x>\frac{2}{5}\\-\frac{3}{4}< x< -\frac{3}{7}\end{cases}}}\)
a) \(\left(\frac{1}{7}x-\frac{2}{7}\right)\cdot\left(-\frac{1}{5}x+\frac{3}{5}\right)\cdot\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
\(\Rightarrow\)TH1 : \(\frac{1}{7}x-\frac{2}{7}=0\) TH2 : \(-\frac{1}{5}x+\frac{3}{5}=0\) TH3 : \(\frac{1}{3}x+\frac{4}{3}=0\)
\(\frac{1}{7}x=\frac{2}{7}\) \(-\frac{1}{5}x=\frac{3}{5}\) \(\frac{1}{3}x=\frac{4}{3}\)
\(x=\frac{2}{7}\cdot7\) \(x=\frac{3}{5}\cdot-5\) \(x=\frac{4}{3}\cdot3\)
\(x=2\) \(x=-3\) \(x=4\)
Vậy x = 2 hoặc x = -3 hoặc x = 4
b) \(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{5}x+1=0\)
\(x\cdot\left(\frac{1}{6}+\frac{1}{10}-\frac{4}{5}\right)=1\)
\(x\cdot\frac{5+3-24}{30}=1\)
\(x\cdot\frac{-8}{15}=1\)
\(x=1\cdot\frac{-15}{8}=\frac{-15}{8}\)
Vậy x = \(\frac{-15}{8}\)
a) \(\left(\frac{2}{3}x-1\right).\left(\frac{3}{4}x+\frac{1}{2}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\frac{2}{3}x-1=0\\\frac{3}{4}x+\frac{1}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{2}{3}x=1\\\frac{3}{4}x=-\frac{1}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1:\frac{2}{3}\\x=\left(-\frac{1}{2}\right):\frac{3}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=-\frac{2}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{3}{2};-\frac{2}{3}\right\}.\)
b) \(\left(x-1\right)^{x-2}=\left(x-1\right)^{x+6}\)
\(\Rightarrow\left(x-1\right)^{x-2}-\left(x-1\right)^{x+6}=0\)
\(\Rightarrow\left(x-1\right)^{x-2}.\left[1-\left(x-1\right)^8\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^{x-2}=0\\1-\left(x-1\right)^8=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^8=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0+1\\x-1=1\\x-1=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=1+1\\x=\left(-1\right)+1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
Vậy \(x\in\left\{1;2;0\right\}.\)
Chúc bạn học tốt!
Vì: \(Ix+\frac{1}{2}I\ge0\)
\(Iy-\frac{3}{4}I\ge0\)
\(Iz-1I\ge0\)
Mà \(Ix+\frac{1}{2}I+Iy-\frac{3}{4}I+Iz-1I=0\)
=> \(x+\frac{1}{2}=0\) và \(y-\frac{3}{4}=0\) và \(z-1=0\)
<=> \(x=-\frac{1}{2}\) và \(y=\frac{3}{4}\) và \(z=1\)
Vậy \(x=-\frac{1}{2}\) và \(y=\frac{3}{4}\) và \(z=1\)
phần B lm tương tự nha