Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)^3-x\left(x-1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3+2x^2-x=10x-5x^2-11x-22\)
\(\Leftrightarrow-x^2+2x-1=-5x^2-x-22\)
\(\Leftrightarrow4x^2+3x+21=0\)
Ta có \(\Delta=3^2-4.4.21< 0\)
Vậy pt vô nghiệm
\(\left(x-1\right)^3-x\left(x-1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)
\(< =>\left(x-1+x\right)\left(x-1\right)^2=10x-5x^2-11x-22\)
\(< =>-x^2+x-1-10x+5x^2+11x+22=0\)
\(< =>4x^2+3x+21=0\)
\(< =>\left(2x\right)^2+2.2x.\frac{3}{4}+\left(\frac{3}{4}\right)^2+20\frac{9}{25}=0\)
\(< =>\left(2x+\frac{3}{4}\right)^2+20\frac{9}{25}=0\)
Do \(\left(2x+\frac{3}{4}\right)^2\ge0=>\left(2x+\frac{3}{4}\right)^2+20\frac{9}{25}\ge20\frac{9}{25}>0\)
Vậy phương trình vô nghiệm
a. (x-3)(x\(^2\)+6x+9)(x-1)(x\(^2\)+2x+1)(-x\(^2\)+2x+3)=0
\(\Leftrightarrow\)(x-3)(x\(^2\)+6x+9)(x-1)(x\(^2\)+2x+1)(x-3)(x+1)=0
b)(2x - 1)^2 - (2x + 5) (2x - 5 ) = 18
4x 2 -4x+1-4x 2+25=18
26-4x=18
4x=8
x=2
a,27x-18=2x-3x^2
<=> 3x^2-2x+27-18x=0
<=> 3x^2-20x+27=0
\(\Delta\)= 20^2-4-12.27
tính \(\Delta\)rồi tìm x1 ,x2
\(\left(\frac{9}{x.x^2-9.x}+\frac{1}{x+_{ }3}\right):\left(\frac{x-3}{x.3+x^2}-\frac{x}{3.x+9}\right)\) đk (x\(\ne\)o; công trừ 3)
<=>\(9+\frac{x.\left(x-3\right)}{x.\left(x^2-9\right)}\):\(\frac{3.\left(x-3\right)-x^2}{3x.\left(x+3\right)}\)
<=>\(-\frac{3}{x-3}=\frac{3}{3-x}\)
Bạn ơi mk k hiểu sao lại ra bước 2 ... bạn giải chi tiết giùm mk nha
dù sao cx cảm ơn bạn đã giúp mk
ta có: \(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x+4\right)^2.\left(x^2-1\right)-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(\left(x+4\right)^2-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+4-1\right)\left(x+4+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+5\right)\)
Cho mình nhé hihi!!!
x2(x+4)2-(x+4)2-(x2-1)
=(x+4)2 (x2-1)-(x2-1)
=(x2-1)(x2+8x+16-1)
=(x-1)(x+1)(x2+8x+15)
Đề sai ! Sửa nhé :
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm2\end{cases}}\)
\(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)
\(\Leftrightarrow A=\left(\frac{2}{x+2}-\frac{4}{\left(x+2\right)^2}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}-\frac{1}{x-2}\right)\)
\(\Leftrightarrow A=\frac{2\left(x+2\right)-4}{\left(x+2\right)^2}:\frac{2-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow A=\frac{2x+4-4}{\left(x+2\right)^2}.\frac{\left(x+2\right)\left(x-2\right)}{-x}\)
\(\Leftrightarrow A=\frac{2x\left(x-2\right)}{-x\left(x+2\right)}\)
\(\Leftrightarrow A=-\frac{2\left(x-2\right)}{x+2}\)
b) Để \(A\le-2\)
\(\Leftrightarrow-\frac{2\left(x-2\right)}{x+2}\le-2\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{x+2}\ge2\)
\(\Leftrightarrow\frac{x-2}{x+2}\ge1\)
\(\Leftrightarrow x-2\ge x+2\)
\(\Leftrightarrow-2\ge2\)(ktm)
Vậy để \(A\le-2\Leftrightarrow x\in\varnothing\)
a.
\(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)
\(A=\left(\frac{2.\left(x^2+8\right)}{\left(x+2\right).\left(x^2+8\right)}-\frac{4\left(x+2\right)}{\left(x+2\right)\left(x^2+8\right)}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{1}{2-x}\right)\)
\(A=\left(\frac{2x^2+8-4x+8}{\left(x+2\right)\left(x^2+8\right)}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{-1}{x-2}\right)\)
\(A=\left(\frac{2x\left(x-2\right)+16}{\left(x+2\right)\left(x^2+8\right)}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{-x-2}{\left(x-2\right)\left(x+2\right)}\right)\)
\(A=\left(\frac{2x\left(x-2\right)+16}{\left(x+2\right)\left(x^2+8\right)}\right):\left(\frac{2-x-2}{\left(x-2\right)\left(x+2\right)}\right)\)
\(A=\left(\frac{\left(2x\left(x-2\right)+16\right)\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x^2+8\right)\left(-x\right)}\right)\)
\(A=\frac{\left(2x\left(x-2\right)+16\right)\left(x-2\right)}{\left(x^2+8\right)\left(-x\right)}\)
\(A=\frac{\left(2x^2-4x+16\right)\left(x-2\right)}{\left(x^2+8\right)\left(-x\right)}\)
\(A=\frac{\left(2x^3-4x-4x-4x^2+8x+16x-32\right)}{-x^3+8}\)
\(A=\frac{2x^3-4x^2+16x-32}{-x^3+8}\)