Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) ta có \(\frac{X}{2}=\frac{Y}{3}\)=>\(\frac{X}{8}=\frac{Y}{12}\)(1)
\(\frac{Y}{4}=\frac{Z}{5}\)=>\(\frac{Y}{12}=\frac{Z}{15}\)(2)
Từ (1)và (2)=>\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\) và x-y-z=28
đến đây tự làm
c) \(\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)
\(\Rightarrow\left(x-\frac{1}{5}\right)^{2004}=0\) và \(\left(y+0,4\right)^{100}=0\) và \(\left(z-3\right)^{678}=0\)
+) \(\left(x-\frac{1}{5}\right)^{2004}=0\Rightarrow x-\frac{1}{5}=0\Rightarrow x=\frac{1}{5}\)
+) \(\left(y+0,4\right)^{100}=0\Rightarrow y+0,4=0\Rightarrow y=-0,4\)
+) \(\left(z-3\right)^{678}=0\Rightarrow z-3=0\Rightarrow z=3\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(\frac{1}{5};-0,4;3\right)\)
\(\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)
Do \(\left(x-\frac{1}{5}\right)^{2004};\left(y+0,4\right)^{100};\left(z-3\right)^{678}\ge0\forall x,y,z\)
\(\Rightarrow\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)
\(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{5}=0\\y+0,4=0\\z-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0,2\\y=-0,4\\z=3\end{cases}}\)
....
Ta có:
\(\left\{{}\begin{matrix}\left(x-\frac{1}{5}\right)^{2004}\ge0\\\left(y+0,4\right)^{100}\ge0\\\left(z-3\right)^{678}\ge0\\\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-\frac{1}{5}\right)^{2004}=0\\\left(y+0,4\right)^{100}=0\\\left(z-3\right)^{678}=0\\\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-\frac{1}{5}\right)=0\\\left(y+0,4\right)=0\\\left(z-3\right)=0\\\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{5}\\y=-0,4\\z=3\end{matrix}\right.\)
\(\left(x-\dfrac{1}{5}\right)^{2004}+\left(y+0.4\right)^{100}+\left(z-3\right)^{678}=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{5}=0\\y+0.4=0\\z-3=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-0.4\\z=3\end{matrix}\right.\)
Vì (x-1/5)2004 \(\ge\)0
(y+0,4)100\(\ge\)0
(z-3)678\(\ge\)0
=>(x-1/5)2004+(y+0,4)100+(z-3)678\(\ge0\)
Dấu "="xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{5}=0\\y+0,4=0\\z-3=0\end{matrix}\right.\) =>\(\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-0,4\\z=3\end{matrix}\right.\)
Vậy x=1/5,y=-0,4,z=3
Vì \(\left(x-\frac{1}{5}\right)^{2004}\ge0\);\(\left(y+0,4\right)^{100}\ge0\);\(\left(z-3\right)^{678}\ge0\)( Vì mũ chẵn)
Nên để biểu thức bằng 0 \(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{5}=0\\y+0,4=0\\z-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{5}\\y=-0,4\\z=3\end{cases}}\)