Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x+\dfrac{1}{101}\right|+\left|x+\dfrac{2}{101}\right|+.....+\left|x+\dfrac{100}{101}\right|=101x\left(1\right)\)
VT(1) \(\ge0\) \(\Rightarrow VP\left(1\right)\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left|x+\dfrac{1}{101}\right|+\left|x+\dfrac{2}{101}\right|+...+\left|x+\dfrac{100}{101}\right|=100x+\dfrac{5050}{101}=101x\\ \Rightarrow x=50\)
ta có : \(C=\left|x-1\right|+\left|2-x\right|+\left|x-3\right|+\left|4-x\right|+...+\left|x-99\right|+\left|100-x\right|\)
\(\ge\left|x-1+2-x+x-3+4-x+...+x-99+100-x\right|=\left|50\right|=50\)
\(\Rightarrow C_{min}=50\)
dấu bằng xảy ra khi : \(x-1;x-2;x-3;...;x-100>0\Leftrightarrow x>100\)
vậy GTNN của \(C\) là \(50\) khi \(x>100\)
a) -(3 - x)¹⁰⁰ - 3(y + 2)²⁰⁰ + 2003
Ta có:
(3 - x)¹⁰⁰ ≥ 0
⇒ -(3 - x)¹⁰⁰ ≤ 0
(y + 2)²⁰⁰ ≥ 0
⇒ -3(y + 2)²⁰⁰ ≤ 0
⇒ -(3 - x)¹⁰⁰ - 3(y + 2)²⁰⁰ ≤ 0
⇒ -(3 - x)¹⁰⁰ - 3(y + 2)²⁰⁰ + 2023 ≤ 2023
Vậy giá trị lớn nhất của biểu thức đã cho là 2023 khi x = 3 và y = -2
b) (x² + 3)² + 125
= x⁴ + 6x² + 9 + 125
= x⁴ + 6x² + 134
Ta có:
x⁴ ≥ 0
x² ≥ 0
⇒ 6x² ≥ 0
⇒ x⁴ + 6x² ≥ 0
⇒ x⁴ + 6x² + 134 ≥ 134
⇒ (x² + 3)² + 125 ≥ 134
Vậy giá trị nhỏ nhất của biểu thức đã cho là 134
c) -(x - 20)²⁰⁰ - 2(y + 5)¹⁰⁰ + 2022
Ta có:
(x - 20)²⁰⁰ ≥ 0
⇒ -(x - 20)²⁰⁰ ≤ 0
(y + 5)¹⁰⁰ ≥ 0
⇒ -2(y + 5)¹⁰⁰ ≤ 0
⇒ -(x - 20)²⁰⁰ - 2(y + 5)¹⁰⁰ ≤ 0
⇒ -(x - 20)²⁰⁰ - 2(y + 5)¹⁰⁰ + 2022 ≤ 2022
Vậy giá trị lớn nhất của biểu thức đã cho là 2022 khi x = 20 và y = -5
Ta có: \(\left|x+\frac{1}{101}\right|\ge0\); \(\left|x+\frac{2}{101}\right|\) \(\ge0\); ...; \(\left|x+\frac{100}{101}\right|\ge0\)
\(\Rightarrow101x\ge0\)
và \(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|\ge0\)
\(\Rightarrow\left|x+\frac{1}{101}\right|=x+\frac{1}{101}\); \(\left|x+\frac{2}{101}\right|=x+\frac{2}{101}\); ...; \(\left|x+\frac{100}{101}\right|=x+\frac{100}{101}\)
Thay vào đề bài ta đc:
\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\right)=101x\)
\(\Rightarrow\) \(100x\) + \(\left(\frac{1+2+...+101}{101}\right)=101x\)
\(\Rightarrow100x+101=101x\)
\(\Rightarrow x=101\)
Vậy \(x=101.\)
\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+\left|x+\frac{3}{101}\right|+....+\left|x+\frac{100}{101}\right|\)=101x (1)
điều kiện:101x\(\ge\) 0 \(\Rightarrow\) x\(\ge\) 0
từ (1) \(\Rightarrow\) \(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}\)=101x
\(\Rightarrow\) 100x+(\(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\))=101x
\(\Rightarrow\) 100x+\(\frac{5050}{101}\)=101x
\(\Rightarrow\) \(\frac{5050}{101}\)=101x-100x
\(\Rightarrow\) x=50
k bt mk lm sai hay lm đúng nữa
nếu mk lm sai thì thôi nha!
\(\left|x-1\right|+\left|x-2\right|+...+\left|x-50\right|+\left|51-x\right|+\left|52-x\right|+...=2500\)
(Đây phải là toán lớp 8 hoặc lớp 9 chứ nhỉ?)
Ta CM được \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) nên vế trái sẽ lớn hơn bằng \(\left|-1-2-...-50+51+52+...+100\right|=2500\)
Và dấu bằng xảy ra khi \(\left(x-1\right),\left(x-2\right),...,\left(x-50\right),\left(51-x\right),...,\left(100-x\right)\) đều cùng dấu với nhau.
100 số này không thể cùng âm được.
Và chúng sẽ cùng không âm khi \(50\le x\le51\). Đây là đáp số của bài toán.
cô mik ra đề sao toán lớp 8 dc