\(\left(\frac{1}{2}-1\right):\left(\frac{1}{3}-1\right):\left(\frac{1}{4}-1\right):...:\left(\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2019

\(\left(\frac{1}{2}-1\right):\left(\frac{1}{3}-1\right):\left(\frac{1}{4}-1\right):...:\left(\frac{1}{100}-1\right)\)

\(=\frac{-1}{2}:\frac{-2}{3}:\frac{-3}{4}:...:\frac{-98}{99}:\frac{-99}{100}\)

\(=\frac{-1\cdot3\cdot4\cdot...\cdot99\cdot100}{2\cdot\left(-2\right)\cdot\left(-3\right)\cdot...\cdot\left(-98\right)\cdot\left(-99\right)}\)

\(=\frac{\left(-1\right)^{99}\cdot100}{2\cdot\left(-2\right)}=\frac{-1\cdot100}{-4}=\frac{-100}{4}=-25\)

- P/s: Không chắc chắn nhé!

14 tháng 8 2020

\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)\)

\(=\left(\frac{1}{2}+\frac{2}{2}\right)\left(\frac{1}{3}+\frac{3}{3}\right)\left(\frac{1}{4}+\frac{4}{4}\right)...\left(\frac{1}{99}+\frac{99}{99}\right)\)

\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}=\frac{100}{2}=50\)

Vậy \(A=50\).

\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)\)

\(A=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}=\frac{3.4.5.....100}{2.3.4.....99}\)

\(\Leftrightarrow A=\frac{100}{2}=50\)

3 tháng 10 2016

\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{100}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}\)

\(=\frac{1}{100}\)

3 tháng 10 2016

\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{100}\right)\)

Đặt : \(A=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{100}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{99}{100}\)

\(A=\frac{1.2.3.4.....99}{2.3.4.5.....100}\)

\(A=\frac{1}{100}\)

Vậy : \(A=\frac{1}{100}\)

2 tháng 5 2018

\(H=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)\cdot\cdot\cdot\cdot\cdot\left(1-\frac{1}{100}\right)\)

\(\Leftrightarrow H=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot\cdot\cdot\cdot\cdot\frac{99}{100}\)

\(\Leftrightarrow H=\frac{1.2.3.4.....99}{2.3.4.5.....100}\)

\(\Leftrightarrow H=\frac{1}{100}\)

2 tháng 5 2018

\(H=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{99}{100}\)

\(H=\frac{1.2.3.4...99}{2.3.4.5...100}\)

\(H=\frac{1}{100}\)

Vậy \(H=\frac{1}{100}.\)

22 tháng 3 2018

\(Q=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{100}\right)\)

\(Q=\left(\frac{1}{2}\right).\left(\frac{2}{3}\right).\left(\frac{3}{4}\right)...\left(\frac{99}{100}\right)\)

\(Q=\frac{1}{100}\)

\(P=\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{99.101}\right)\)

\(P=\left(\frac{1.3}{1.3}+\frac{1}{1.3}\right)\left(\frac{2.4}{2.4}+\frac{1}{2.4}\right)\left(\frac{3.5}{3.5}+\frac{1}{3.5}\right)...\left(\frac{99.101}{99.101}+\frac{1}{99.101}\right)\)

\(P=\left(\frac{4}{1.3}\right)\left(\frac{9}{2.4}\right)\left(\frac{16}{3.5}\right)...\left(\frac{10000}{99.101}\right)\)

\(P=\left(\frac{2^2}{1.3}\right)\left(\frac{3^2}{2.4}\right)\left(\frac{4^2}{3.5}\right)...\left(\frac{100^2}{99.101}\right)\)

Bạn tự tách ra rồi bạn sẽ ra kết quả như ở dưới

\(P=\frac{201}{100}\)

29 tháng 3 2017

a) \(=\frac{3}{2}.\frac{4}{3}....\frac{100}{99}=\frac{100}{2}=50\)

29 tháng 3 2017

a) =3/2 . 4/3 . 5/4 ...100/99

   =\(\frac{3.4.5...100}{2.3.4..99}\)

  =\(\frac{100}{2}\)

b) =

7 tháng 5 2017

\(A=\frac{3}{2}.\frac{4}{3}....\frac{100}{99}=\frac{100}{2}=50\)

7 tháng 5 2017

\(A=\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times...\times\frac{99}{98}\times\frac{100}{99}\)

Vì phép nhân có thể rút gọn được

\(\Rightarrow A=\frac{100}{2}=50\)

Vậy A = 50

10 tháng 5 2018

A =(1/2 +1)×(1/3 +1)×(1/4 +1)×....×(1/99 +1)

=3/2x4/3x...............x100/99

=2-1/99

=197/99

10 tháng 5 2018

A= \(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot.....\cdot\frac{100}{99}\)

A=\(\frac{\left(3\cdot4\cdot5\cdot....\cdot99\right)\cdot100}{2\cdot\left(3\cdot4\cdot5\cdot...\cdot99\right)}\)

A=\(\frac{100}{2}=50\)

\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\)

\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

=> \(\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)>\(\frac{32}{100}\)=32%

22 tháng 11 2021

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a} đây là biểu thức gì\)