Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Giả sử \(\log _{3}a=\log_4b=\log_{12}c=\log_{13}(a+b+c)=t\)
\(\Rightarrow 13^t=3^t+4^t+12^t\)
\(\Rightarrow \left ( \frac{3}{13} \right )^t+\left ( \frac{4}{13} \right )^t+\left ( \frac{12}{13} \right )^t=1\)
Xét vế trái , đạo hàm ta thấy hàm luôn nghịch biến nên phương trình có duy nhất một nghiệm \(t=2\)
Khi đó \(\log_{abc}144=\log_{144^t}144=\frac{1}{t}=\frac{1}{2}\)
Đáp án B
cho em hỏi tại sao lại có 3^t +4^t +12^t=13^t. Với lại em không hiểu chỗ tại sao hàm số nghịch biến. Và tại sao từ \(\log_{abc}144=\log144_{144^t}=\dfrac{1}{t}\)
\(\Leftrightarrow\left(1-2i\right)z-\left(\dfrac{1}{2}-\dfrac{3}{2}i\right)=\left(3-i\right)z\)
\(\Leftrightarrow\left(1-2i\right)z-\left(3-i\right)z=\dfrac{1}{2}-\dfrac{3}{2}i\)
\(\Leftrightarrow\left(-2-i\right)z=\dfrac{1}{2}-\dfrac{3}{2}i\)
\(\Rightarrow z=\dfrac{1-3i}{2\left(-2-i\right)}=\dfrac{1}{10}+\dfrac{7}{10}i\)
\(\Rightarrow A\left(\dfrac{1}{10};\dfrac{7}{10}\right)\) \(\Rightarrow\) tọa độ trung điểm I là \(\left(\dfrac{1}{20};\dfrac{7}{20}\right)\)
a) \(\left(\dfrac{1}{16}\right)^{-\dfrac{3}{4}}+810000^{0.25}-\left(7\dfrac{19}{32}\right)^{\dfrac{1}{5}}\)
\(=\left(\dfrac{1}{2}\right)^{4.\left(-\dfrac{3}{4}\right)}+\left(30\right)^{4.0,25}-\left(\dfrac{243}{32}\right)^{\dfrac{1}{5}}\)
\(=\left(\dfrac{1}{2}\right)^{-3}+30-\left(\dfrac{3}{2}\right)^{5.\dfrac{1}{5}}\)
\(=2^3+30-\dfrac{3}{2}\)
\(=36,5\)
b) \(=\left(0,1\right)^{3.\left(-\dfrac{1}{3}\right)}-2^{-2}.2^{6.\dfrac{2}{3}}-\left[\left(2\right)^3\right]^{-\dfrac{4}{3}}\)
\(=0,1^{-1}-2^2-2^{-4}\)
\(=10-4-\dfrac{1}{16}\)
\(=\dfrac{95}{16}\)
a) \(\left(\dfrac{1}{2}\right)^n\le10^{-9}\)\(\Leftrightarrow2^{-n}\le10^{-9}\)\(\Leftrightarrow-n\le log^{10^{-9}}_2\)\(\Leftrightarrow-n\le-9log^{10}_2\)\(\Leftrightarrow n\ge9log^{10}_2\)\(\Leftrightarrow n\ge30\).
Vậy \(n=30\).
b) \(3-\left(\dfrac{7}{5}\right)^n\le0\)
\(\Leftrightarrow-\left(\dfrac{7}{5}\right)^n\le-3\)
\(\Leftrightarrow\left(\dfrac{7}{5}\right)^n\ge3\)\(\Leftrightarrow n\ge log^3_{\dfrac{7}{5}}\)
\(\Rightarrow\)\(n\in\left\{4;5;6;7;...\right\}\Rightarrow n=4\)
c) \(1-\left(\dfrac{4}{5}\right)^n\ge0,97\)
\(\Leftrightarrow-\left(\dfrac{4}{5}\right)^n\ge-0,3\)
\(\Leftrightarrow\left(\dfrac{4}{5}\right)^n\le0,3\)\(\Leftrightarrow n\ge log^{0,3}_{\dfrac{4}{5}}\)
\(\Rightarrow n\in\left\{6;7;8;9...\right\}\Rightarrow n=6\)
d)\(\left(1+\dfrac{5}{100}\right)^n\ge2\)
\(\Leftrightarrow1,05^n\ge2\)
\(\Rightarrow n\in\left\{15;16;17;18;...\right\}\Rightarrow n=15\)
\(\Leftrightarrow\left(\dfrac{3}{4}\right)^x.\left(\dfrac{4}{3}\right)^{\dfrac{4}{x}}=\dfrac{9}{16}\)
\(\Rightarrow\left(\dfrac{3}{4}\right)^x.\left(\dfrac{3}{4}\right)^{-\dfrac{4}{x}}=\left(\dfrac{3}{4}\right)^2\)
\(\Rightarrow\left(\dfrac{3}{4}\right)^{x-\dfrac{4}{x}}=\left(\dfrac{3}{4}\right)^2\)
\(\Rightarrow x-\dfrac{4}{x}=2\)
\(\Rightarrow x^2-2x-4=0\)
Viet: \(x_1+x_2=2\)
\(\left(\dfrac{-2}{5}+\dfrac{3}{7}\right)-\left(\dfrac{4}{9}+\dfrac{12}{20}-\dfrac{13}{35}\right)+\dfrac{7}{35}\)
\(=-\dfrac{2}{5}+\dfrac{3}{7}-\dfrac{4}{9}-\dfrac{3}{5}+\dfrac{13}{35}+\dfrac{7}{35}\\ =\left(-\dfrac{2}{5}-\dfrac{3}{5}\right)+\left(\dfrac{13}{35}+\dfrac{7}{35}+\dfrac{3}{7}\right)-\dfrac{4}{9}\\ =-1+\left(\dfrac{4}{7}+\dfrac{3}{7}\right)-\dfrac{4}{9}\\ =-1+1-\dfrac{4}{9}\\ =-\dfrac{4}{9}\)