Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần lượt lấy pt (3) trừ 2 lần pt (1) và pt (2) trừ 3 lần pt (1) ta được:
\(\left\{{}\begin{matrix}y-\left(2m+3\right)z=-3\\y-\left(3m+1\right)z=m-3\end{matrix}\right.\)
Hệ đã cho có vô số nghiệm khi và chỉ khi:
\(\dfrac{1}{1}=\dfrac{3m+1}{2m+3}=\dfrac{m-3}{-3}\) (ko tồn tại m thỏa mãn)
Vậy ko tồn tại m để hệ có vô số nghiệm
\(\left\{{}\begin{matrix}mx+y=1\\my+z=1\\x+mz=1\end{matrix}\right.\). Tìm m để pt có nghiệm duy nhất
Nhân 2 vế của pt thứ 2 với m rồi trừ đi pt thứ 3 ta được
\(\Leftrightarrow\left\{{}\begin{matrix}mx+y=1\\-x+m^2y=m-1\end{matrix}\right.\)
Hệ có nghiệm duy nhất khi:
\(m^3+1\ne0\Rightarrow m\ne-1\)
\(\left\{{}\begin{matrix}x^2-6x+9\ge x^2+7x+1\\x\ge\dfrac{2m-8}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{8}{13}\\x\ge\dfrac{2m-8}{5}\end{matrix}\right.\)
\(\Leftrightarrow(-\text{∞};\dfrac{8}{13}]\cap[\dfrac{2m-8}{5};+\text{∞})=\phi\Leftrightarrow\dfrac{8}{3}< \dfrac{2m-8}{5}\Leftrightarrow m>\dfrac{72}{13}\)
Lần lượt lấy pt (3) trừ pt (1) và pt (2) trừ 2 lần pt (1) ta được:
\(\left\{{}\begin{matrix}\left(m-1\right)y+4z=1\\y+\left(m+2\right)z=1\end{matrix}\right.\)
Hệ đã cho vô nghiệm khi:
\(\dfrac{1}{m-1}=\dfrac{m+2}{4}\ne\dfrac{1}{1}\)
\(\Leftrightarrow m=-3\)