K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2021

\(\left\{{}\begin{matrix}4x^3-3x+\left(y-1\right)\sqrt{2y+1}=0\left(1\right)\\2x^2+x+\sqrt{-y\left(2y+1\right)}=0\left(2\right)\end{matrix}\right.\)

Đk: \(-\dfrac{1}{2}\le y\le0\)

pt (1)\(\Leftrightarrow\left(2y-2\right)\sqrt{2y+1}=-8x^3+6x\Leftrightarrow\left[\left(2y+1\right)-3\right]\sqrt{2y+1}=\left(-2x\right)^3-3\left(-2x\right)\left(3\right)\)

đặt \(\left\{{}\begin{matrix}u=-2x\\v=\sqrt{2y+1}\end{matrix}\right.\) pt (3) -> \(u^3-3u=v^3-3v\left(4\right)\)

có: \(-\dfrac{1}{2}\le y\le0\) nên \(0\le2y+1\le1\Rightarrow0\le\sqrt{2y+1}\le1hay0\le v\le1\)

từ (2), có: \(\sqrt{-y\left(2y+1\right)}=-2x^2-x\Rightarrow-2x^2-x\ge0\Rightarrow-\dfrac{1}{2}\le x\le0\Rightarrow0\le-2x\le1hay0\le u\le1\)

xét hàm số \(f\left(t\right)=t^3-3t\) liên tục trên [0;1]

\(f'\left(t\right)=3t^2-3=3\left(t^2-1\right)\le0\forall t\in\left[0;1\right]\) nên \(f\left(t\right)\) nghịch biến trên [0;1]

do đó (4)\(\Leftrightarrow f\left(u\right)=f\left(v\right)\Leftrightarrow u=v\Leftrightarrow-2x=\sqrt{2y+1}\Leftrightarrow y=\dfrac{4x^2-1}{2}\)

thay \(y=\dfrac{4x^2-1}{2}\) vào pt (2), có:

\(2x^2+x+\sqrt{\dfrac{\left(1-4x\right)^2}{2}\left(4x^2\right)}=0\Leftrightarrow2x^2+x-x\sqrt{2-8x^2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+1-\sqrt{2-8x^2}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\12x^2+4x-1=0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}vx=\dfrac{1}{6}\end{matrix}\right.\)

đk \(-\dfrac{1}{2}\le x\le0\) ta nhận nghiệm \(x=0;x=-\dfrac{1}{2}\)

+ Với x=0 có y=-1/2 (nhận)

+với x=-1/2 có y=0 ( nhận)

Vậy...

25 tháng 6 2019

5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)

Thay từng TH rồi làm nha bạn

3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)

thay nhá

3 tháng 11 2019

Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)

PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)

+) Với y = x - 1 thay vào pt (2):

\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))

Anh quy đồng lên đê, chắc cần vài con trâu đó:))

+) Với y = 2x + 3...

3 tháng 3 2019

1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0

Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)\((x = -2 ; y = 3)\)

3 tháng 3 2019

\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)

\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))

Thay vào phương trình (2) giải dễ dàng.

27 tháng 6 2019

1,\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x-2y\right)\left(x+y\right)=0\\\sqrt{2x}+\sqrt{y+1}=2\left(\circledast\right)\end{matrix}\right.\)

\(\left(x-2y\right)\left(x+y\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=-y\end{matrix}\right.\)

Th1:\(x=2y\) Thay vào \(\left(\circledast\right)\) , ta có :

\(\sqrt{4y}+\sqrt{y+1}=2\)

\(\Leftrightarrow2-2\sqrt{y}=\sqrt{y+1}\)\(\Leftrightarrow3y-8\sqrt{y}+3=0\)

Giải pt thu được (x;y)

Th2:x=-y thay vào \(\left(\circledast\right)\), ta có

\(\sqrt{-2x}+\sqrt{y+1}=2\)

Xét đk ta thấy:\(y\le0;y\ge-1\)(vô nghiệm)

Vậy ....

27 tháng 6 2019

2,\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-1\right)\left(x+y^2\right)=0\\\sqrt{x}+\sqrt{y+1}=2\end{matrix}\right.\)

\(\left(x-y-1\right)\left(x+y^2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=y+1\\x=-y^2\end{matrix}\right.\)

Th1:\(x=y+1\)

Thay vào ta có:\(\sqrt{x}+\sqrt{x}=2\Leftrightarrow x=1\)\(\Leftrightarrow y=0\)

Th2:\(x=-y^2\)thay vào ta có:

\(\sqrt{-y^2}+\sqrt{y+1}=2\)

\(-y^2\le0\) mà nhận thấy y=0 ko là nghiệm của pt

\(\Rightarrow\)Pt vô nghiệm

20 tháng 3 2019

b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)

\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)

\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)

\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)

\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)

\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)

20 tháng 3 2019

caau a) binh phuong len ra no x=y tuong tu