K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì \(\dfrac{2}{1}\ne\dfrac{-1}{1}=-1\)

nên hệ luôn có nghiệm duy nhất

\(\left\{{}\begin{matrix}2x-y=3m-7\\x+y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x=3m-7+1=3m-6\\x+y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m-2\\y=1-m+2=-m+3\end{matrix}\right.\)

Để x,y dương thì \(\left\{{}\begin{matrix}m-2>0\\-m+3>0\end{matrix}\right.\)

=>2<m<3

\(P=x-y-xy-2m\)

\(=m-2-\left(-m+3\right)-\left(m-2\right)\left(-m+3\right)-2m\)

\(=m-2+m-3+\left(m-2\right)\left(m-3\right)-2m\)

\(=m^2-5m+6-5=m^2-5m+1\)

\(=m^2-5m+\dfrac{25}{4}-\dfrac{21}{4}=\left(m-\dfrac{5}{2}\right)^2-\dfrac{21}{4}>=-\dfrac{21}{4}\forall m\)

Dấu '=' xảy ra khi m=5/2(nhận)

4 tháng 2 2022

Ta có: \(\left\{{}\begin{matrix}3x+y=2m+9\\x+y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x+5-x=2m+9\\y=5-x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x=2m+4\\y=5-x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=5-m-2\end{matrix}\right.\)

Gọi A=xy+x-1, ta có: \(A=\left(m+2\right)\left(5-m-2\right)+m+2-1\)

\(A=\left(m+2\right)\left(3-m\right)+m+1\)

\(A=-m^2+m+6+m+1\)

\(A=-m^2+2m+7=-\left(m-1\right)^2+8\)

\(A_{max}=7\Leftrightarrow m=1\) Khi đó x=3, y=2

x-y=4+2m và 4x+y=3m-4

=>5x=5m và x-y=2m+4

=>x=m và y=m-2m-4=-m-4

xy=-5

=>m(-m-4)=-5

=>m^2+4m=5

=>m^2+4m-5=0

=>(m+5)(m-1)=0

=>m=1 hoặc m=-5

Vì \(\dfrac{3}{1}\ne\dfrac{-1}{2}\)

nên hệ luôn có nghiệm duy nhất

\(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x-y=2m-1\\3x+6y=9m+6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-7y=2m-1-9m-6=-7m-7\\x+2y=3m+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=m+1\\x=3m+2-2m-2=m\end{matrix}\right.\)

\(y-\sqrt{x}=1\)

=>\(m+1-\sqrt{m}=1\)

=>\(m-\sqrt{m}=0\)

=>\(\sqrt{m}\left(\sqrt{m}-1\right)=0\)

=>\(\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)

11 tháng 1 2022

\(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6x-2y+x+2y=4m-2+3m+2\\x+2y=3m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\x+2y=3m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\m+2y=3m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\2y=2m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)

\(x^2+y^2+3\\ =m^2+\left(m+1\right)^2+3\\ =m^2+m^2+2m+1+3\\ =2m^2+2m+4\\ =2\left(m^2+m+2\right)\)

\(=2\left(m^2+m+\dfrac{1}{4}+\dfrac{7}{4}\right)\)

\(=2\left[\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right]\)

\(=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{2}\ge\dfrac{7}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow m=-\dfrac{1}{2}\)

Vậy ...

 

 

a:

Để hệ có nghiệm duy nhất thì m/2<>-2/-m

=>m^2<>4

=>m<>2 và m<>-2

 

 

Để phương trình có nghiệm duy nhất thì \(\dfrac{m-1}{2}\ne\dfrac{-m}{-1}=m\)

=>\(m-1\ne2m\)

=>\(m\ne-1\)

\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\y=2x-m-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x-m-5\\\left(m-1\right)x-m\left(2x-m-5\right)=3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x-m-5\\\left(m-1\right)x-2xm+m^2+5m=3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\left(m-1-2m\right)=-m^2-5m+3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\left(-m-1\right)=-m^2-2m-1=-\left(m+1\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\cdot\left(-1\right)\cdot\left(m+1\right)=-\left(m+1\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1\\y=2\left(m+1\right)-m-5=2m+2-m-5=m-3\end{matrix}\right.\)

\(x^2-y^2=24\)

=>\(\left(m+1\right)^2-\left(m-3\right)^2=24\)

=>\(m^2+2m+1-m^2+6m-9=24\)

=>8m-8=24

=>m=4(nhận)

Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{2}\ne\dfrac{-m}{-1}=m\)

=>\(2m\ne m-1\)

=>\(m\ne-1\)(1)

\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\y=2x-m-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(m-1\right)x-m\left(2x-m-5\right)=3m-1\\y=2x-m-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(m-1\right)-2mx+m^2+5m-3m+1=0\\y=2x-m-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(-m-1\right)+m^2+2m+1=0\\y=2x-m-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(m+1\right)=\left(m+1\right)^2\\y=2x-m-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1\\y=2\left(m+1\right)-m-5=2m+2-m-5=m-3\end{matrix}\right.\)

\(x^2-y^2< 4\)

=>\(\left(m+1\right)^2-\left(m-3\right)^2< 4\)

=>\(m^2+2m+1-m^2+6m-9< 4\)

=>8m-8<4

=>8m<12

=>\(m< \dfrac{3}{2}\)

Kết hợp (1), ta được: \(\left\{{}\begin{matrix}m< \dfrac{3}{2}\\m\ne-1\end{matrix}\right.\)

Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{2}\ne\dfrac{-m}{-1}=m\)

=>\(2m\ne m-1\)

=>\(m\ne-1\)

\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x-m-5\\\left(m-1\right)x-m\left(2x-m-5\right)=3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\left(m-1\right)-2mx+m^2+5m=3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\left(m-1-2m\right)=-m^2-5m+3m-1=-m^2-2m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2x-m-5\\x\left(-m-1\right)=-\left(m+1\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1\\y=2\left(m+1\right)-m-5=2m+2-m-5=m-3\end{matrix}\right.\)

\(x^2-y^2< 4\)

=>\(\left(m+1\right)^2-\left(m-3\right)^2< 4\)

=>\(m^2+2m+1-m^2+6m-9< 4\)

=>8m-8<4

=>8m<12

=>\(m< \dfrac{3}{2}\)

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}m< \dfrac{3}{2}\\m\ne-1\end{matrix}\right.\)

=>2x-2y=8 và 2x+3y=5m+3

=>-5y=8-5m-3=-5m+5 và x-y=4

=>y=m-1 và x=4+m-1=m+3

x^2+y^2-4=(m+3)^2+(m-1)^2-4

=m^2+6m+9+m^2-2m+1-4

=2m^2+4m+6

=2(m^2+2m+3)

=2(m^2+2m+1+2)

=2[(m+1)^2+2]>=4

=>A<=2019/4

Dấu = xảy ra khi m=-1