Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4^6.3^4.9^5}{6^{12}}=\frac{\left(2^2\right)^6.3^4.\left(3^2\right)^5}{2^{12}.3^{12}}=\frac{2^{12}.3^4.3^{10}}{2^{12}.3^{12}}=\frac{2^{12}.3^{14}}{2^{12}.3^{12}}=3^2=9\)
\(\frac{4^6\cdot3^4\cdot9^5}{6^{12}}\)
\(=\frac{2^{12}\cdot3^4\cdot3^{10}}{2^{12}\cdot3^{12}}\)
\(=\frac{1\cdot3^{14}}{1\cdot3^{12}}\)
\(=\frac{3^{14}}{3^{12}}\)
\(=3^2\)
\(=9\)
A=\(\frac{72^3.54^2}{108^4}=\frac{\left(2^3.3^2\right)^3.\left(2.3^3\right)^2}{\left(2^2.3^3\right)^4}=\frac{2^9.3^6.2^2.3^6}{2^8.3^{12}}=\frac{2^{11}.3^{12}}{2^8.3^{12}}=2^3=8\)
B= \(\frac{4^6.3^4.9^5}{6^{12}}=\frac{2^{12}.3^4.3^{10}}{2^{12}.3^{12}}=\frac{2^{12}.3^{14}}{2^{12}.3^{12}}=3^2=9\)
c) \(\frac{2^{13}+2^5}{2^{10}+2^2}=\frac{2^5\left(2^8+1\right)}{2^2\left(2^8+1\right)}=2^3=8\)
1.
\(\frac{72^3\times54^2}{108^4}=\frac{\left(8\times9\right)^3\times\left(27\times2\right)^2}{\left(27\times4\right)^4}=\frac{\left(2^3\times3^2\right)^3\times\left(3^3\times2\right)^2}{\left(3^3\times2^2\right)^4}=\frac{\left(2^3\right)^3\times\left(3^2\right)^3\times\left(3^3\right)^2\times2^2}{\left(3^3\right)^4\times\left(2^2\right)^4}=\frac{2^9\times3^6\times3^6\times2^2}{3^{12}\times2^8}=2^3=8\)
2.
\(\frac{4^6\times3^4\times9^5}{6^{12}}=\frac{\left(2^2\right)^6\times3^4\times\left(3^2\right)^5}{\left(2\times3\right)^{12}}=\frac{2^{12}\times3^4\times3^{10}}{2^{12}\times3^{12}}=3^2=9\)
3.
\(\frac{2^{13}+2^5}{2^{10}+2^2}=\frac{2^5\times\left(2^8+1\right)}{2^2\times\left(2^8+1\right)}=2^3=8\)
\(\left(\dfrac{2}{3}\right)^3.\left(\dfrac{-3}{4}\right)^2.\left(-1\right)^{2013}=\dfrac{8}{27}.\dfrac{9}{16}.\left(-1\right)=-\dfrac{1}{6}\)
\(\left(\dfrac{1}{5}\right)^{15}.\left(\dfrac{1}{4}\right)^{20}=\dfrac{1}{5^{12}}.\dfrac{1}{4^{20}}=5^{-12}.4^{-20}=125^{-4}.1024^{-4}=\left(125.1024\right)^{-4}=128000^{-4}\)
\(\dfrac{16^3.3^{10}+120.6^9}{4^6.3^{12}+6^{11}}=\dfrac{2^{12}.3^{10}+2^3.3.5.2^9.3^9}{2^{12}.3^{12}+2^{11}.3^{11}}=\dfrac{2^{12}.3^{10}+2^{12}.2^{10}.5}{2^{12}.3^{12}+2^{11}.3^{11}}=\dfrac{2^{12}.3^{10}\left(1+5\right)}{2^{11}.3^{11}\left(2.3+1\right)}=\dfrac{2.6}{3.7}=\dfrac{4}{7}\)
mk ko viết lại đề
\(A=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}+\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}+2^{12}.3^{12}}\)
\(=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}+\frac{2^{12}.3^{10}\left(1+5\right)}{2.\left(2^{12}.3^{12}\right)}\)
\(=\frac{2}{3.4}+\frac{2^{12}.3^{10}.6}{2.2^{12}.3^{12}}=\frac{1}{6}+\frac{1}{3}=\frac{1}{2}\)
Vậy A= \(\frac{1}{2}\)
a) \(2^6.3^3.12^2=2^{2.3}.3^3.12^2=4^3.3^3.12^2=12^3.12^2=12^5\)
b) \(20^4:2^6=\left(2^2.5\right)^4:2^6=2^8.5^4:2^6=2^2.5^4=2^2.25^2=50^2\)
c) \(100^3:2^5=\left(25.2^2\right)^3:2^5=25^3.2^6:2^5=25^3.2\)
d) \(125^2.9^3.2^6=\left(5^3\right)^2.\left(3^2\right)^3.2^6=5^6.3^6.2^6=30^6\)
e) \(81^4.9^2.3^7= \left(3^4\right)^4.\left(3^2\right)^2.3^7=3^{16}.3^4.3^7=3^{27}\)
g) \(250^6:5^5=\left(2.5^3\right)^6:5^5=2^6.5^{18}:5^6=2^6.5^{12}=50^6\)
1,26.33.24.32=210.35
2,28.54:26=22.54
3,22.52:25=\(\frac{1}{2^3}.5^2\)
4,56.92.26=106.92
5,316.34.37=327
6,518.2:55=513.2
\(\left(4096.81.729\right):2176782336\)
\(\left(331776.729\right):2176782336\)
\(\left(241864704\right):2176782336\)
\(\frac{4^6.3^4.9^3}{6^{12}}=\frac{2^{12}.3^4.3^6}{2^{12}.3^{12}}=\frac{2^{12}.3^{10}}{2^{12}.3^{12}}=\frac{1}{3^2}=\frac{1}{9}\)