Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\cdot\sqrt{3}\)
\(=\left(7\cdot4\sqrt{3}+3\cdot3\sqrt{3}-2\cdot2\sqrt{3}\right)\cdot\sqrt{3}\)
\(=33\sqrt{3}\cdot\sqrt{3}\)
=99
b) Ta có: \(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
\(=\left(12\cdot5\sqrt{2}-8\cdot10\sqrt{2}+7\cdot15\sqrt{2}\right):\sqrt{10}\)
\(=\dfrac{85\sqrt{2}}{\sqrt{10}}=\dfrac{85}{\sqrt{5}}=17\sqrt{5}\)
c) Ta có: \(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\cdot2\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+3\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=36-36\sqrt{2}+18\sqrt{3}\)
d) Ta có: \(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
\(=3\cdot\sqrt{75\sqrt{2}}+5\cdot\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)
\(=3\cdot5\sqrt{2}\cdot\sqrt{\sqrt{2}}+4\sqrt{3}\sqrt{\sqrt{2}}\)
\(=15\sqrt{\sqrt{8}}+4\sqrt{\sqrt{18}}\)
a,=\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right).\sqrt{3}\)
\(=28.3+9.3-4.3=99\)
b,\(=\left(60\sqrt{2}-80\sqrt{2}+175\sqrt{2}\right):\sqrt{10}\)
\(=155\sqrt{2}:\sqrt{10}=\dfrac{155}{\sqrt{5}}\)
a)\(\left(\sqrt{10}-\sqrt{15}+3\sqrt{3}\right)\sqrt{5}-\sqrt{72}\)
\(=\sqrt{15}-\sqrt{15}+15-6\sqrt{2}\)
\(15-6\sqrt{2}\)
b)\(\dfrac{\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right)}{8\sqrt{10}}\)
\(=\dfrac{\left(15.5\sqrt{2}+5.10\sqrt{2}-3.15\sqrt{2}\right)}{8\sqrt{10}}\)
\(=\dfrac{\left(75\sqrt{2}+50\sqrt{2}-45\sqrt{2}\right)}{8\sqrt{10}}\)
\(=\dfrac{80\sqrt{2}}{8\sqrt{10}}=\dfrac{10\sqrt{2}}{\sqrt{10}}=\sqrt{20}=2\sqrt{5}\)
a: \(2\sqrt{8\sqrt{3}}-\sqrt{2\sqrt{3}}-\sqrt{9\sqrt{12}}\)
\(=2\sqrt{4\cdot2\sqrt{3}}-\sqrt{2\sqrt{3}}-\sqrt{9\cdot2\sqrt{3}}\)
\(=4\sqrt{2\sqrt{3}}-\sqrt{2\sqrt{3}}-3\sqrt{2\sqrt{3}}\)
=0
b: \(\sqrt{3}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\sqrt{3}+\left|2-\sqrt{3}\right|\)
\(=\sqrt{3}+2-\sqrt{3}\)
=2
c: \(\sqrt{\left(\sqrt{7}-4\right)^2}-\sqrt{28}+\sqrt{63}\)
\(=\left|\sqrt{7}-4\right|-2\sqrt{7}+3\sqrt{7}\)
\(=4-\sqrt{7}+\sqrt{7}\)
=4
d: \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)
\(=\dfrac{\sqrt{10}\left(15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\right)}{\sqrt{10}}\)
\(=15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\)
\(=15\sqrt{5}+5\cdot2\sqrt{5}-3\cdot3\sqrt{5}\)
\(=16\sqrt{5}\)
e: \(\sqrt{3}-2\sqrt{48}+3\sqrt{75}-4\sqrt{108}\)
\(=\sqrt{3}-2\cdot4\sqrt{3}+3\cdot5\sqrt{3}-4\cdot6\sqrt{3}\)
\(=\sqrt{3}-8\sqrt{3}+15\sqrt{3}-24\sqrt{3}\)
\(=-16\sqrt{3}\)
a) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)
= \(2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(2-\sqrt{3}+\sqrt{3}-1\) = \(1\)
b) \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
= \(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3-2\sqrt{6}\right)^2}\)
= \(3-\sqrt{6}+2\sqrt{6}-3\) = \(\sqrt{6}\)
c) \(\left(15\sqrt{200}-3\sqrt{450}+2\sqrt{50}\right):\sqrt{10}\)
= \(\dfrac{15\sqrt{200}}{\sqrt{10}}-\dfrac{3\sqrt{450}}{\sqrt{10}}+\dfrac{2\sqrt{50}}{\sqrt{10}}\)
= \(15\sqrt{20}-3\sqrt{45}+2\sqrt{5}\)
= \(30\sqrt{5}-9\sqrt{5}+2\sqrt{5}\) = \(23\sqrt{5}\)
\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}=\left|2-\sqrt{3}\right|+\sqrt{3-2\sqrt{3}+1}=2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}=2-\sqrt{3}+\left|\sqrt{3}-1\right|=2-\sqrt{3}+\sqrt{3}-1=1\)
Giải:
a) \(\left(\sqrt{3}+2\sqrt{5}\right)\sqrt{3}-\sqrt{60}\)
\(=\sqrt{3}.\sqrt{3}+2\sqrt{5}.\sqrt{3}-\sqrt{60}\)
\(=3+2\sqrt{15}-\sqrt{60}\)
\(=3+2\sqrt{15}-2\sqrt{15}\)
\(=3\)
Vậy ...
b) \(\left(15\sqrt{200}-3\sqrt{450}+2\sqrt{50}\right):\sqrt{10}\)
\(=\left(15\sqrt{4.50}-3\sqrt{9.50}+2\sqrt{50}\right):\sqrt{10}\)
\(=\left(30\sqrt{50}-9\sqrt{50}+2\sqrt{50}\right):\sqrt{10}\)
\(=23\sqrt{50}:\sqrt{10}\)
\(=\dfrac{23\sqrt{50}}{\sqrt{10}}\)
\(=\dfrac{23\sqrt{5}\sqrt{10}}{\sqrt{10}}\)
\(=23\sqrt{5}\)
Vậy ...
\(a\text{) }\left(\sqrt{3}+2\sqrt{5}\right)\sqrt{3}-\sqrt{60}\\ =3+2\sqrt{15}-2\sqrt{15}=3\)
\(b\text{) }\left(15\sqrt{200}-3\sqrt{450}+2\sqrt{50}\right):\sqrt{10}\\ =15\sqrt{20}-3\sqrt{45}+2\sqrt{5}\\ =30\sqrt{5}-9\sqrt{5}+2\sqrt{5}\\ =\left(30-9+2\right)\sqrt{5}=23\sqrt{5}\)
\(a.\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}=\left(2\sqrt{7}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}=3.7-2.\sqrt{7.2.7}+14\sqrt{2}=21\) \(b.\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):10=\left(75\sqrt{2}+50\sqrt{2}-45\sqrt{2}\right).\dfrac{1}{10}=80\sqrt{2}.\dfrac{1}{10}=8\sqrt{2}\) \(c.\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-3\sqrt{0,4}\right)=\left(\sqrt{10}-\sqrt{2}\right)\left(\sqrt{2}-3\sqrt{\dfrac{2}{5}}\right)=\left(\sqrt{5}-1\right)\left(2-6\sqrt{\dfrac{1}{5}}\right)\)
1:
a: \(\sqrt{36}-\sqrt{100}=6-10=-4\)
b: Để \(\sqrt{\dfrac{2}{2x-1}}\) có nghĩa thì \(\dfrac{2}{2x-1}>=0\)
=>2x-1>0
=>x>1/2
2:
a: \(A=\dfrac{\left(15\sqrt{180}-5\sqrt{200}-3\sqrt{450}\right)}{\sqrt{10}}\)
\(=15\sqrt{\dfrac{180}{10}}-5\sqrt{\dfrac{200}{10}}-3\sqrt{\dfrac{450}{10}}\)
\(=15\sqrt{18}-5\sqrt{20}-3\sqrt{45}\)
\(=45\sqrt{2}-10\sqrt{5}-9\sqrt{5}\)
\(=45\sqrt{2}-19\sqrt{5}\)
b: \(B=\sqrt{32}-\sqrt{50}-16\sqrt{\dfrac{1}{8}}\)
\(=4\sqrt{2}-5\sqrt{2}-\dfrac{16}{\sqrt{8}}\)
\(=-\sqrt{2}-2\sqrt{8}=-\sqrt{2}-4\sqrt{2}=-5\sqrt{2}\)
TK:
\(=\left(15\cdot10\sqrt{2}-3\cdot15\sqrt{2}+2\cdot5\sqrt{2}\right):10\\ =\left(150\sqrt{2}-45\sqrt{2}+10\sqrt{2}\right):10\\ =115\sqrt{2}:10=\dfrac{23\sqrt{2}}{2}\)