Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{5\cdot6}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)
\(A=1-\frac{1}{6}\)
\(A=\frac{5}{6}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)
\(A=1-\frac{1}{6}\)
\(A=\frac{5}{6}\)
\(B=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
\(B=\frac{100}{2}\)
Ta có :
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.....\frac{99^2}{99.100}\)
\(=\)\(\frac{1^2.2^2.3^2.....99^2}{1.2.2.3.3.4.....99.100}\)
\(=\)\(\frac{1^2.2^2.3^2.....99^2}{1^2.2^2.3^2.4^2.....99^2}.\frac{1}{100}\)
\(=\)\(\frac{1}{100}\)
Xét: \(1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
Khi đó:
\(1-\frac{2}{2.3}=\frac{1.4}{2.3}\) ; \(1-\frac{2}{3.4}=\frac{2.5}{3.4}\) ; ... ; \(1-\frac{2}{101.102}=\frac{100.103}{101.102}\)
\(\Rightarrow M=\frac{1.4}{2.3}\cdot\frac{2.5}{3.4}\cdot\cdot\cdot\frac{100.103}{101.102}\)
\(M=\frac{\left(1.2...100\right).\left(4.5...103\right)}{\left(2.3...101\right).\left(3.4...102\right)}=\frac{103}{101.3}=\frac{103}{303}\)
Vậy \(M=\frac{103}{303}\)
\(1-\frac{2}{2}.3\) hay là \(1-\frac{2}{2.3}\)