Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{2014^2}-1\right)\)
A = \(\left(-\frac{1.3}{2.2}\right)\left(-\frac{2.4}{3.3}\right)...\left(-\frac{2013.2015}{2014.2014}\right)\)
A = \(-\left[\frac{\left(1.2....2013\right)\left(3.4....2015\right)}{\left(2.3....2014\right)\left(2.3...2014\right)}\right]\)
A = \(-\left(\frac{2015}{2014.2}\right)\)
A = \(-\frac{2015}{4028}\)
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
D= [(1-1/2)(1-1/3)...(1-1/25)]:[(1+1/2)(1+1/3)...(1+1/25)]
D= [1/2. 2/3. ... . 24/25]: [3/2. 4/3. ... . 26/25]
D= 1/25 : 2/26
D= 1/25 . 26/2= 13/25
Vậy D= 13/25
\(D=\left[\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{25}\right)\right]\)\(:\left[\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{25}\right)\right]\)
\(D=\left[\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{24}{25}\right]:\left[\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{26}{25}\right]\)
\(D=\frac{1.2.3...24}{2.3.4...25}:\frac{3.4.5...26}{2.3.4...25}\)
\(D=\frac{1}{25}:13\)
\(D=\frac{1}{325}\)
`A=(10^14-1)/(10^15-11)`
`=>10A=(10^15-10)/(10^15-11)`
`=>10A=(10^15-11+1)/(10^15-11)`
`=>10A=1+1/(10^15-1)`
`=>A>1/10`
`B=(10^14+1)/(10^15+9)`
`=>10B=(10^15+10)/(10^15+9)`
`=>10A=(10^15+9+1)/(10^15+9)`
`=>10A=1+1/(10^15+9)`
Vì `1/(10^15-1)>1/(10^15+9)`
`=>10B>10A`
`=>B>A`
Giải:
\(A=\dfrac{10^{14}-1}{10^{15}-11}\)
\(10A=\dfrac{10^{15}-10}{10^{15}-11}\)
\(10A=\dfrac{10^{15}-11+1}{10^{15}-11}\)
\(10A=1+\dfrac{1}{10^{15}-11}\)
Tương tự:
\(B=\dfrac{10^{14}+1}{10^{15}+9}\)
\(10B=\dfrac{10^{15}+10}{10^{15}+9}\)
\(10B=\dfrac{10^{15}+9+1}{10^{15}+9}\)
\(10B=1+\dfrac{1}{10^{15}+9}\)
Vì \(\dfrac{1}{10^{15}-11}>\dfrac{1}{10^{15}+9}\) nên \(10A>10B\)
\(\Rightarrow A>B\)
Chúc bạn học tốt!
\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)..........\left(\frac{1}{99}+1\right)\)
\(=\frac{3}{2}.\frac{4}{3}.........\frac{100}{99}\)
\(=\frac{100}{2}=50\)
\(B=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right).........\left(\frac{1}{100}-1\right)\)
\(=-\frac{1}{2}.-\frac{2}{3}..........-\frac{99}{100}\)
\(=\frac{-1}{100}\)
\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)......\left(\frac{1}{99}+1\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
\(=\frac{3.4.5.....100}{2.3.4.....99}\)
\(=\frac{100}{2}=50\)
\(T=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(T=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(T=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(T=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(T=2.\frac{502}{1005}=\frac{1004}{1005}\)
\(\Rightarrow T=\frac{1004}{1005}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009+2011}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2009+2011}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)
\(A=\frac{1}{2}.\frac{2010}{2011}\)
\(\Rightarrow A=\frac{1005}{2011}\)
\(\left(1-\frac{1}{1014}\right).\left(1-\frac{2}{1014}\right).\left(1-\frac{3}{1014}\right).\left(1-\frac{4}{1014}\right)...\left(1-\frac{1015}{1014}\right)\)
\(=\left(1-\frac{1}{1014}\right).\left(1-\frac{2}{1014}\right).\left(1-\frac{3}{1014}\right).\left(1-\frac{4}{1014}\right)...\left(1-\frac{1014}{1014}\right).\left(1-\frac{1015}{1014}\right)\)
\(=\left(1-\frac{1}{1014}\right).\left(1-\frac{2}{1014}\right).\left(1-\frac{3}{1014}\right).\left(1-\frac{4}{1014}\right)...\left(1-1\right).\left(1-\frac{1015}{1014}\right)\)
\(=\left(1-\frac{1}{1014}\right).\left(1-\frac{2}{1014}\right).\left(1-\frac{3}{1014}\right).\left(1-\frac{4}{1014}\right)...0.\left(1-\frac{1015}{1014}\right)\)
\(=0\)