K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2017

Chọn n P →  = (2; −1; 3).

Phương trình của (P) là: 2(x – 1) – (y + 3) + 3(z – 2) = 0 hay 2x – y + 3z – 11 = 0.

22 tháng 5 2017

Ôn tập chương III

8 tháng 4 2016


B C A D H K J S

Kẻ \(SH\perp AC\left(H\in AC\right)\)

Do \(\left(SAC\right)\perp\left(ABCD\right)\Rightarrow SH\perp\left(ABCD\right)\)

\(SA=\sqrt{AC^2-SC^2}=a;SH=\frac{SA.SC}{AC}=\frac{a\sqrt{3}}{2}\)

\(S_{ABCD}=\frac{AC.BD}{2}=2a^2\)

\(V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.2a^2=\frac{a^3\sqrt{3}}{3}\)

Ta có \(AH=\sqrt{SA^2-SH^2}=\frac{a}{2}\Rightarrow CA=4HA\Rightarrow d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)

Do BC//\(\left(SAD\right)\Rightarrow d\left(B,\left(SAD\right)\right)=d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)

Kẻ \(HK\perp AD\left(K\in AD\right),HJ\perp SK\left(J\in SK\right)\)

Chứng minh được \(\left(SHK\right)\perp\left(SAD\right)\) mà \(HJ\perp SK\Rightarrow HJ\perp\left(SAD\right)\Rightarrow d\left(H,\left(SAD\right)\right)=HJ\)

Tam giác AHK vuông cân tại K\(\Rightarrow HK=AH\sin45^0=\frac{a\sqrt{2}}{4}\)

\(\Rightarrow HJ=\frac{SH.HK}{\sqrt{SH^2+HK^2}}=\frac{a\sqrt{3}}{2\sqrt{7}}\)

Vậy \(d\left(B,\left(SAD\right)\right)=\frac{2a\sqrt{3}}{\sqrt{7}}=\frac{2a\sqrt{21}}{7}\)

27 tháng 9 2017

Chọn:

n P → = n Q → ∧ n R →

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Phương trình của (P) là:

7(x – 1) + 5(y + 3) – 3(z – 2) = 0

Hay 7x + 5y – 3z + 14 = 0

28 tháng 6 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Xét phương trình:

2(1 + 2t) + (t) + (−2 – 3t) – 1 = 0 ⇔ 2t – 1= 0 ⇔ t = 1/2

Vậy đường thẳng d cắt mặt phẳng ( α ) tại điểm M(2; 1/2; −7/2).

Ta có vecto pháp tuyến của mặt phẳng ( α ) và vecto chỉ phương của đường thẳng d lần lượt là  n α →  = (2; 1; 1) và  a d →  = (2; 1; −3).

Gọi  a ∆ → là vecto pháp tuyến của Δ, ta có  a ∆ →    n α → và  a ∆ → ⊥   a d →

Suy ra  a ∆ → n α → ∧   n d → = (−4; 8; 0) hay  a ∆ →  = (1; −2; 0)

Vậy phương trình tham số của ∆ là Giải sách bài tập Toán 12 | Giải sbt Toán 12

NV
28 tháng 1 2021

a.

Chọn \(C\left(1;1;1\right)\) là 1 điểm thuộc denta

\(\Rightarrow\overrightarrow{AC}=\left(0;-1;4\right)\)

Đường thẳng denta có \(\overrightarrow{u_{\Delta}}=\left(2;-1;1\right)\) là 1 vtcp

\(\Rightarrow\left[\overrightarrow{AC};\overrightarrow{u_{\Delta}}\right]=\left(3;8;2\right)\)

\(\Rightarrow\left(Q\right)\) nhận \(\left(3;8;2\right)\) là 1 vtpt

Phương trình (Q):

\(3\left(x-1\right)+8\left(y-2\right)+2\left(y+3\right)=0\)

b.

Mặt phẳng (P) nhận \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\) là 1 vtpt

Ta có: \(\left[\overrightarrow{u_{\Delta}};\overrightarrow{n_{\left(P\right)}}\right]=\left(-2;-1;3\right)\)

Mặt phẳng (Q) nhận (2;1;-3) là 1 vtpt

Phương trình (Q):

\(2\left(x-1\right)+1\left(y-2\right)-3\left(z+3\right)=0\)

NV
28 tháng 1 2021

c.

Gọi M là giao điểm denta và (P) thì tọa độ M thỏa:

\(-1+2t+2-t+t-3=0\Rightarrow t=1\)

\(\Rightarrow M\left(1;1;1\right)\)

\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{u_{\Delta}}\right]=\left(2;1;-3\right)\)

Đường thẳng d nhận (2;1;-3) là 1 vtcp

Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+2t\\y=1+t\\z=1-3t\end{matrix}\right.\)

d.

Do M thuộc denta nên tọa độ có dạng: \(M\left(-1+2t;2-t;t\right)\)

M là trung điểm AN \(\Rightarrow N\left(-3+4t;2-2t;2t+3\right)\)

N thuộc (P) nên: \(-3+4t+2-2t+2t+3-3=0\Rightarrow t=\dfrac{1}{4}\)

\(\Rightarrow\overrightarrow{MN}=\left(-2+2t;-t;t+3\right)=\left(-\dfrac{3}{2};-\dfrac{1}{4};\dfrac{13}{4}\right)=-\dfrac{1}{4}\left(6;1;13\right)\)

Phương trình d: \(\left\{{}\begin{matrix}x=1+6t\\y=2+t\\z=-3+13t\end{matrix}\right.\)

NV
27 tháng 2 2021

a. (P) vuông góc denta nên nhận (1;2;3) là 1 vtpt

Phương trình (P):

\(1\left(x-2\right)+2\left(y-1\right)+3\left(z-3\right)=0\)

\(\Leftrightarrow x+2y+3z-13=0\)

b. \(\overrightarrow{AB}=\left(1;2;-1\right)\) ; \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\)

\(\left[\overrightarrow{AB};\overrightarrow{n_{\left(P\right)}}\right]=\left(3;-2;-1\right)\)

Phương trình mp:

\(3\left(x-1\right)-2\left(y+1\right)-1\left(z-2\right)=0\)

\(\Leftrightarrow3x-2y-z-3=0\)

26 tháng 5 2017

Hình giải tích trong không gian

14 tháng 6 2017

Đáp án D

Gọi  là hình chiếu vuông góc cảu A trên d

Ta có:

23 tháng 5 2017

a) Gọi \(\overrightarrow{u}\left(1;-2;-1\right)\) là vectơ chỉ phương của d, giả sử \(\overrightarrow{v}\left(a;b;c\right)\)Ôn tập cuối năm môn hình học 12