Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3x-2}-\frac{1}{3x+2}-\frac{-3+6}{9x^2-4}=\frac{1}{3x-2}-\frac{1}{3x+2}-\frac{3}{\left(3x-2\right)\left(3x+2\right)}=\frac{3x+2_{ }-3x+2-3}{\left(3x-2\right)\left(3x+2\right)}=\frac{1}{\left(3x-2\right)\left(3x+2\right)}\)
ý b bạn chỉ cần phân tích mẩu ra nó là 1 hằng đẳng thức rồi lấy mẫu chung là hằng đẩng thưcs đó rồi làm như thường
\(\dfrac{1}{x^2-x+1}-\dfrac{x^2+2}{x^3+1}=\dfrac{1}{x^2-x+1}-\dfrac{x^2+2}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{x^2+2}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x+1-x^2-2}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x+1}{x^3+1}+\dfrac{x^3+1}{x^3+1}-\dfrac{x^2+2}{x^3+1}\)
\(=\dfrac{x+1+x^3+1-x^2-2}{x^3+1}\)
\(=\dfrac{x^3-x^2+x}{x^3+1}=\dfrac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x}{x+1}\)
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người đọc hiểu đề của bạn hơn nhé.
a: \(\dfrac{1}{2a}+\dfrac{2}{3b}\)(ĐKXĐ: a<>0 và b<>0)
\(=\dfrac{1\cdot3b+2\cdot2a}{2a\cdot3b}\)
\(=\dfrac{3b+4a}{6ab}\)
b: \(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}\)(ĐKXĐ: \(x\notin\left\{1;-1\right\}\))
\(=\dfrac{\left(x-1\right)^2-\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x^2-2x+1-x^2-2x-1}{\left(x+1\right)\left(x-1\right)}=\dfrac{-4x}{x^2-1}\)
c: \(\dfrac{x+y}{xy-y}+\dfrac{z}{yz}\)(ĐKXĐ: \(\left\{{}\begin{matrix}x< >1\\y< >0\\z< >0\end{matrix}\right.\))
\(=\dfrac{x+y}{y\left(x-1\right)}+\dfrac{1}{y}\)
\(=\dfrac{x+y+x-1}{y\left(x-1\right)}\)
\(=\dfrac{2x+y-1}{y\left(x-1\right)}\)
d: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
\(\dfrac{2}{x-3}-\dfrac{12}{x^2-9}\)
\(=\dfrac{2}{x-3}-\dfrac{12}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x+6-12}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x-6}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x+3}\)
e: ĐKXĐ: x<>2
\(\dfrac{1}{x-2}+\dfrac{2}{x^2-4x+4}\)
\(=\dfrac{1}{x-2}+\dfrac{2}{\left(x-2\right)^2}\)
\(=\dfrac{x-2+2}{\left(x-2\right)^2}=\dfrac{x}{\left(x-2\right)^2}\)