Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(x+y\right)^2:\left(x+y\right)=\left(x+y\right)^{2-1}=x+y\)
b)\(\left(x-y\right)^5:\left(y-x\right)^4=\left(x-y\right)^5:\left(-\left(x-y\right)^4\right)=-\left(x-y\right)^{5-4}=-\left(x-y\right)\)
c)\(\left(x-y+z\right)^4:\left(x-y+z\right)^3=\left(x-y+z\right)^{4-3}=x-y+z\)
a) =(x-y)5+(x-y)3=(x-y)3[(x-y)2+1]
b) =33(y-2x)3:-9(y-2x)=-3(y-2x)2
c) =(x-y)2 [3(x-y)3-2(x-y)2+3]:5(x-y)2=[3(x-y)3-2(x-y)2+3]/5
Bài giải:
[3(x – y)4 + 2(x – y)3 – 5(x – y)2] : (y – x)2
= [3(x – y)4 + 2(x – y)3 – 5(x – y)2] : [-(x – y)]2
= [3(x – y)4 + 2(x – y)3 – 5(x – y)2] : (x – y)2
= 3(x – y)4 : (x – y)2 + 2(x – y)3 : (x – y)2 + [– 5(x – y)2 : (x – y)2]
= 3(x – y)2 + 2(x – y) – 5
Bài 65: (SGK/29):
Cách 1:
[ 3(x-y)4 + 2(x-y)3 - 5(x-y)2] : (y-x)2
= [ 3(x-y)4 + 2(x-y)3 - 5(x-y)2] : (x-y)2
= 3.(x-y)4 : (x-y)2 + 2.(x-y)3 : (x-y)2 - 5.(x-y)2 : (x-y)2
= 3.(x-y)2 + 2.(x-y) - 5
Cách theo SGK:
[ 3(x-y)4 + 2(x-y)3 - 5(x-y)2] : (y-x)2
Đặt (x-y) = z => (y-x) = z
=> (x-y)2 = z2 = (y-x)2 = (-z2) = z2
Ta có: ( 3.z4 + 2.z3 - 5.z2) : z2
= (3z4 : z2) + (2z3 : z2) - (5z2 : z2)
= 3z2 + 2z - 5
Cách 2:
[ 3(x-y)4 + 2(x-y)3 - 5(x-y)2] : (y-x)2
= (x-y)2 [ 3(x-y)2 + 2(x-y) - 5] : (x-y)2
= 3(x-y)2 + 2(x-y) - 5
\(a,2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
\(=2x^2+2y^2+x^2+2xy+y^2+x^2-2xy+y^2=3\left(x^2+y^2\right)\)\(b,\left(5x-1\right)+2\left(1-5x\right)\left(4x+5\right)+\left(5x+4\right)\)\(=\left[\left(5x-1\right)-\left(5x+4\right)\right]^2=25\)
c)\(Q=\left(x-y\right)^3+\left(x+y\right)^3+\left(x-y\right)^3-3xy\left(x+y\right)\)
\(=x^3-3x^2y+3xy^2-y^3+x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-3xy^2-3x^2y\)
\(=x^3+y^3\)
d)\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(2P=5^{32}-1\Rightarrow P=\dfrac{5^{32}-1}{2}\)
2. CMR:
a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)
Ta có: VT=\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5=x^5-y^5=VP\)=> đpcm.
b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5+y^5\)
Ta có: VT=\(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5=VP\)
=> đpcm.
c. \(\left(x+a\right)\left(x+b\right)=x^2+\left(a+b\right)x+ab\)
\(\Leftrightarrow x^2+bx+ax+ab=x^2+ax+bx+ab\) (đúng)
=> đpcm.
a) ( x2 - 5 )( x + 3 ) = x3 + 3x2 - 5x - 15
b) ( x + 4 )( x - x2 ) = x2 - x3 + 4x - 4x2 = -x3 - 3x2 + 4x
c) ( x2 - 6 )( x + 2 ) + ( x + 3 )( x - x2 ) = x3 + 2x2 - 6x - 12 + x2 - x3 + 3x - 3x2 = -3x - 12 = -3( x + 4 )
d) x( x - y ) - y( x - y ) = ( x - y )( x - y ) = ( x - y )2
e) x2( x + y ) - x( x2 - y ) = x3 + x2y - x3 + xy = x2y + xy = xy( x + 1 )
f) 3x( 12x - 4 ) - 9x( 4x - 3 ) = 36x2 - 12x - 36x2 + 27x = 15x
Bài làm
a) ( x2 - 5 )( x + 3 )
= x3 + 3x2 - 5x - 15
b) ( x + 4 )( x - x2 )
= ( x + 4 ) . x( 1 - x )
= x( x + 4 )( 1 - x )
= x( x - x2 + 4 - 4x )
= x( 4 - x2 - 3x )
= 4x - x3 - 3x2
c) ( x2 - 6 )( x + 2 ) + ( x + 3 )( x - x2 )
= ( x - 3 )( x + 3 )( x + 2 ) + ( x + 3 )( x - x2 )
= ( x + 3 )[ ( x - 3 )( x + 2 ) + ( x - x2 )]
= ( x + 3 ) [ x2 + 2x - 3x - 6 + x2 - x2 ]
= ( x + 3 ) ( x2 - x - 6 )
= x3 - x2 - 6x + 3x2 - 3x - 18
= x3 + 2x2 - 9x - 18
d) x( x - y ) - y( x - y )
= ( x - y )( x - y )
= ( x - y )2
= x2 - 2xy + y
e) x2( x + y ) - x( x2 - y )
= x3 + x2y - x3 + xy
= x2y + xy
f) 3x( 12x - 4 ) - 9x( 4x - 3 )
= 3x . 3( 4x - 1 ) - 9x( 4x - 3 )
= 9x( 4x - 1 ) - 9x( 4x - 3 )
= 9x( 4x - 1 - 4x + 3 )
= 9x . 2
= 18x
a) \(\left( {6{x^3} - 7{x^2} - x + 2} \right):\left( {2x + 1} \right)\)
b) $(x^4-x^3+x^2+3x):(x^2-2x+3)$
c) \(\left( {{x^2} + {y^2} + 6x + 9} \right):\left( {x + y + 3} \right)\)
\(=\left( {{x^2} + 6x + 9 - {y^2}} \right)\left( {x + y + 3} \right)\)
\(=\left[ {\left( {{x^2} + 2x.3 + {3^2}} \right) - {y^2}} \right]:\left( {x + y + 3} \right)\)
\(=\left[ {{{\left( {x + 3} \right)}^2} - {y^2}} \right]:\left( {x + y + 3} \right)\)
\(=\left( {x + 3 - y} \right)\left( {x + 3 + y} \right):\left( {x + y + 3} \right)\)
$= x + 3 - y$
$= x - y + 3$
(6x3 - 7x2 - x + 2) : (2x + 1)
= (6x3 + 3x2 - 10x2 - 5x + 4x + 2) : (2x + 1)
= [(6x3 + 3x2) - (10x2 + 5x) + (4x + 2)] : (2x + 1)
= [3x2(2x + 1) - 5x(2x + 1) + 2(2x + 1)] : (2x + 1)
= (3x2 - 5x + 2)(2x + 1) : (2x + 1)
= 3x2 - 5x + 2
(x4 - x3 + x2 + 3x) : (x2 - 2x + 3)
= (x4 + x3 - 2x3 - 2x2 + 3x2 + 3x) : (x2 - 2x + 3)
= [(x4 + x3) - (2x3 + 2x2) + (3x2 + 3x)] : (x2 - 2x + 3)
= [x3(x + 1) - 2x2(x + 1) + 3x(x + 1)] : (x2 - 2x + 3)
= (x3 - 2x2 + 3x)(x + 1) : (x2 - 2x + 3)
= x(x2 - 2x + 3)(x + 1): (x2 - 2x + 3)
= x(x + 1)
= x2 + x
(x2 - y2 + 6x + 9) : (x + y + 3)
= [(x2 + 6x + 9) - y2] : (x + y + 3)
= [(x + 3)2 - y2] : (x + y + 3)
= (x + 3 + y)(x + 3 - y) : (x + y + 3)
= (x + y + 3)(x - y + 3) : (x + y + 3)
= x - y + 3
CHÚC BN HOK TỐT
\(5\left(x-y\right)^4-3\left(x-y\right)^3+4\left(x-y\right)^2=\left(x-y\right)^2\left[5\left(x-y\right)^2-3\left(x-y\right)+4\right]\)
\(\left(y-x\right)^2=\left(x-y\right)^2\)
\(\Rightarrow\left[5\left(x-y\right)^4-3\left(x-y\right)^3+4\left(x-y\right)^2\right]:\left(y-x\right)^2=5\left(x-y\right)^2-3\left(x-y\right)+4\)