K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2016

bn cung choi pokiwar ak

 

25 tháng 1 2016

phan tich cho mik cai

 

a: \(\Leftrightarrow\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{9}-\dfrac{1}{10}\right)\cdot\left(x-1\right)+\dfrac{1}{10}x-x=-\dfrac{9}{10}\)

\(\Leftrightarrow\dfrac{9}{10}x-\dfrac{9}{10}-\dfrac{9}{10}x=-\dfrac{9}{10}\)

=>-9/10=-9/10(luôn đúng)

b: \(\Leftrightarrow\dfrac{195x+195+130x+195+117x+195+100x+195}{195}=\dfrac{22\cdot39+4\cdot65+6\cdot39+40\cdot5}{195}\)

=>347x+780=1552

=>347x=772

hay x=772/347

12 tháng 8 2016

hghhhhhhg

12 tháng 8 2016

nhìn lại đề bài phần a) đi

14 tháng 5 2015

 <=>\(\left(\frac{x}{1}+\frac{2x}{3}+\frac{3x}{5}+...+\frac{20x}{39}\right)+\left(\frac{1}{1}+\frac{3}{3}+\frac{5}{5}+...+\frac{39}{39}\right)=20+2.\left(\frac{1}{1}+\frac{2}{3}+\frac{3}{5}+...+\frac{20}{39}\right)\)<=> 

\(\left(\frac{1}{1}+\frac{2}{3}+\frac{3}{5}+...+\frac{20}{39}\right).x+20=20+2.\left(\frac{1}{1}+\frac{2}{3}+\frac{3}{5}+...+\frac{20}{39}\right)\)

<=> \(\left(\frac{1}{1}+\frac{2}{3}+\frac{3}{5}+...+\frac{20}{39}\right).x=2.\left(\frac{1}{1}+\frac{2}{3}+\frac{3}{5}+...+\frac{20}{39}\right)\)<=> x = 2 

10 tháng 1 2017

(x+1) / 1 + (2x+3) / 3 + (3x+5) / 5+ ... + (20x + 39) / 39

= 22 + 4 /3 + 6 / 5 +... + 40 /39 
<=> x+ 1+ 2x / 3 +1 + 3x / 5+1+...+20x / 39+1 = 22+4 / 3+6 / 5+8 / 7+...+38 / 37+40 / 39 
<=> (1+2 / 3+3 / 5+4 / 7+...+19 / 37+20 / 39)x + 20 = 22+4/3+6/5+8/7+...+38/37+40/39 
<=> (1+2/3+3/5+4/7+...+19/37+20/39)x = 2(1 + 2/3 + 3/5 + 4/7 +...+ 19/37 + 20/39) 
<=> x = 2

Bạn viết lại để rồi gửi lại được không? Do mình không hiểu đề, đề viết dính quá

17 tháng 8 2018

\(\left(x^2+x\right)^2-2x^2-2x-15\)

\(=\left(x^2+x\right)^2-\left(2x^2+2x+15\right)\)

\(=\left(x^2+x\right)^2-\left[\left(2x^2+2x\right)+15\right]\)

\(=\left(x^2+x\right)^2-\left[2.\left(x^2+x\right)+15\right]\)

\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-15\) \(\left(1\right)\)

đặt \(x^2+x=t\)

\(\left(1\right)\)\(=\)  \(t^2-2t-15\)

            \(=\left(t-1\right)^2-16\)

            \(=\left(t-1-4\right)\left(t-1+4\right)\)

           \(=\left(t-5\right)\left(t+3\right)\)

thay \(t=x^2+x\) ta có

\(\left(1\right)=\left(x^2+x-5\right)\left(x^2+x+3\right)\)

các câu còn lại tương tự nha

học tốt