K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\dfrac{3}{2}\sqrt{12}+\sqrt{75}-\sqrt{300}+\sqrt{27}\)

\(=3\sqrt{3}+5\sqrt{3}-10\sqrt{3}+3\sqrt{3}\)

\(=\sqrt{3}\)

b) Ta có: \(\sqrt{14-6\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)

\(=3-\sqrt{5}+\sqrt{5}-2\)

=1

17 tháng 9 2021

1.\(sin^2\alpha+cos^2\alpha=\left(\dfrac{AC}{BC}\right)^2+\left(\dfrac{AB}{BC}\right)^2\)

=\(\dfrac{AC^2+AB^2}{BC^2}=\dfrac{BC^2\left(pytago\right)}{BC^2}=1\)

2.ta có \(tan\alpha=\dfrac{AC}{AB}\)

\(\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{AC}{BC}}{\dfrac{AB}{BC}}=\dfrac{AC}{AB}\)

\(\Rightarrow tan\alpha=\dfrac{sin\alpha}{cos\alpha}\)

3.ta có:\(1+tan^2\alpha=1+\left(\dfrac{sin\alpha}{cos\alpha}\right)^2\)

=\(\dfrac{sin^2\alpha+cos^2\alpha}{cos^2\alpha}\)=\(\dfrac{1}{cos^2\alpha}\)

4.ta có :\(cot\alpha=\dfrac{AB}{AC}\)

\(\dfrac{cos\alpha}{sin\alpha}=\dfrac{\dfrac{AB}{BC}}{\dfrac{AC}{BC}}=\dfrac{AB}{AC}\)

\(\Rightarrow cot\alpha=\dfrac{cos\alpha}{sin\alpha}\)

\(1+cot^2\alpha=1+\left(\dfrac{cos\alpha}{sin\alpha}\right)^2=\dfrac{sin^2\alpha+cos^2\alpha}{sin^2\alpha}\)=\(\dfrac{1}{sin^2a}\)

 

Bạn cần giúp bài nào ạ? Nếu bạn cần giúp hết, bạn tách các câu ra từng CH riêng nhé, không ai làm hết được tất cả trong 1 CH đâu bạn, mà có làm thì chất lượng cũng chưa được cao. 

a: Hàm số đồng biến khi x>0 và nghịch biến khi x<0

c: PTHĐGĐ là

2x^2=x+1

=>2x^2-x-1=0

=>2x^2-2x+x-1=0

=>(x-1)(2x+1)=0

=>x=1 hoặc x=-1/2

=>y=2 hoặc y=2*(-1/2)^2=2*1/4=1/2

b: loading...

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

Lời giải:

b. Tam giác $ABC$ vuông tại $A$ và $C=45^0$ nên:

 $B=90^0-C=90^0-45^0=45^0$

Do đó, tam giác $ABC$ vuông cân tại $A$

$\Rightarrow AC=AB=50$ (cm)

Áp dụng định lý Pitago: $BC=\sqrt{AB^2+AC^2}=\sqrt{50^2+50^2}=50\sqrt{2}$ (cm)

f.

Theo định lý Pitago: $AC=\sqrt{BC^2-AB^2}=\sqrt{7^2-5^2}=2\sqrt{6}$ (cm)

$\sin B=\frac{AC}{BC}=\frac{2\sqrt{6}}{7}$

$\Rightarrow B=44,42^0$

$C=90^0-B=90^0-44,42^0=45,58^0$

b) Xét ΔABC vuông tại A có \(\widehat{C}=45^0\)(gt)

nên ΔABC vuông cân tại A(Định nghĩa tam giác vuông cân)

Suy ra: \(\widehat{B}=45^0\) và AC=50(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=50^2+50^2=5000\)

hay \(BC=50\sqrt{2}\left(cm\right)\)

27 tháng 10 2021

a: Thay \(x=9+4\sqrt{2}\) vào A, ta được:

\(A=\dfrac{2\sqrt{2}+1+7}{2\sqrt{2}+1-1}=\dfrac{8+2\sqrt{2}}{2\sqrt{2}}=2\sqrt{2}+1\)

27 tháng 10 2021

Câu 6

Thay x=-1 và y=2 vào (d), ta được:

-m+1+2m-3=2

\(\Leftrightarrow m=4\)

27 tháng 10 2021

Câu 5:

Gọi đths cần tìm là \(y=ax+b\left(a\ne0\right)\)

Vì đt vuông góc với \(y=2x+7\) nên \(2a=-1\Leftrightarrow a=-\dfrac{1}{2}\)

 

Do đó hệ số góc của đt là \(a=-\dfrac{1}{2}\)

27 tháng 10 2021

Câu 7:

Thay x=0 và y=9 vào (d), ta được:

-2m-3=9

hay m=-6

27 tháng 10 2021

Thay x=0 và y=9 vào (d), ta được:

-2m-3=9