Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
R=1/2CD=a
h=AD=2a
S1=Sxq=2*pi*r*h=2*pi*a*2a=4*pi*a^2
S2=Stp=2*pi*r^2+2*pi*r*h
=2*pi*a^2+2*pi*a*2a
=6*pi*a^2
>S1/S2=2/3
\(\Delta'=\left(m-1\right)^2-\left(2m-4\right)=\left(m-2\right)^2+1>0;\forall m\)
\(\Rightarrow\) Pt đã cho luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=2m-4\end{matrix}\right.\) (1)
a. Pt có 2 nghiệm đối nhau khi:
\(x_1+x_2=0\Leftrightarrow2m-2=0\Rightarrow m=1\)
b. Trừ vế cho vế của (1) ta được:
\(x_1+x_2-x_1x_2=2m-2-\left(2m-4\right)\)
\(\Leftrightarrow x_1+x_2-x_1x_2=2\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m
a: Khi x=2 thì (1) sẽ là:
4-2(m+2)+m+1=0
=>m+5-2m-4=0
=>1-m=0
=>m=1
x1+x2=m+1=3
=>x2=3-2=1
b: Δ=(m+2)^2-4(m+1)
=m^2+4m+4-4m-4=m^2>=0
=>Phương trình luôn có hai nghiệm
P=(x1+x2)^2-4x1x1+3x1x2
=(x1+x2)^2-x1x2
=(m+2)^2-m-1
=m^2+4m+4-m-1
=m^2+3m+3
=(m+3/2)^2+3/4>=3/4
Dấu = xảy ra khi m=-3/2
a: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
hay M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM⊥AB
a.
Hệ có nghiệm duy nhất khi:
\(\dfrac{m}{2}\ne\dfrac{1}{-1}\Rightarrow m\ne-2\)
b.
Hệ có vô số nghiệm khi:
\(\dfrac{1}{1}=\dfrac{m}{-1}=\dfrac{3}{3}\Rightarrow m=-1\)
c.
Hệ vô nghiệm khi:
\(\dfrac{2}{-4}=\dfrac{-1}{2}\ne\dfrac{-m}{4}\Rightarrow m\ne2\)
a. Do (-2;3) là nghiệm của hpt, thay (-2;3) vào hệ ta được:
\(\Rightarrow\left\{{}\begin{matrix}-2a+9=1\\-2+3b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=0\end{matrix}\right.\)
b. Do hệ có nghiệm là (2;-1), thay (2;-1) vào hệ ta được:
\(\Rightarrow\left\{{}\begin{matrix}2a+b=2\\4a-3b=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=0\end{matrix}\right.\)
Bài 1: hình 2:
áp dụng HTL ta có: \(BH.BC=AB^2\Rightarrow20x=144\Rightarrow x=\dfrac{36}{5}\)
\(x+y=BC\Rightarrow\dfrac{36}{5}+y=20\Rightarrow y=\dfrac{64}{5}\)
Bài 2:
hình 4:
BC=BH+HC=1+4=5
áp dụng HTL ta có: \(BH.BC=AB^2\Rightarrow1.5=AB^2\Rightarrow x=\sqrt{5}\)
áp dụng HTL ta có: \(HC.BC=AC^2\Rightarrow4.5=AC^2\Rightarrow y=2\sqrt{5}\)
hình 6:
Áp dụng HTL ta có: \(BH.HC=AH^2\Rightarrow4x=25\Rightarrow x=\dfrac{25}{4}\)
câu 3.
Ta biết rằng khi chuyển đổi từ \(^oC->^oF\) ta có công thức
\(y=ax+b\)(trong đó x là số chỉ \(^oC\), y là chỉ \(^oF\))
theo bài ra=>hệ pt:\(\left\{{}\begin{matrix}32=a.0+b\\212=100a+b\end{matrix}\right.< =>\left\{{}\begin{matrix}b=32\\a=1,8\end{matrix}\right.\)
câu 4:
đường kính nón : \(35-10-10=15cm\)
=>bán kính nón: \(R=\dfrac{15}{2}=7,5cm^{ }\)
=>Sxq(nón)=\(\pi Rl=3,14.30.7,5\approx707cm^2\)
S(vành nón)=\(\pi\left(\dfrac{35}{2}\right)^2-\pi.\left(\dfrac{15}{2}\right)^2=785cm^2\)
S(vải cần thiết)=\(707+785=1492cm^2\)
do hao hụt 20% vải nên số vải cần để khâu mũ là:
\(1492+20\%.1492\approx1790cm^2\)
Gọi hai số cần tìm lần lượt là a,a+1
Theo đề, ta co: a^2+(a+1)^2=85
=>2a^2+2a+1-85=0
=>a^2+a-42=0
=>a=6