Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+a\right)\left(x+b\right)\)
=>\(x^2+bx+ax+ab\)
=>\(x^2+\left(a+b\right)x+ab\)(ĐPCM)
Nhớ H cho mik nhé, các bạn.
Biến đổi vế trái:
a + b + c 3 = a + + c 3 = a + b 3 +3 a + b 2 c+3(a+b) c 2 + c 3
= a 3 + 3 a 2 b + 3a b 2 + b 3 + 3( a 2 + 2ab + b 2 )c + 3a c 2 + 3b c 2 + c 3
= a 3 + 3 a 2 b + 3a b 2 + b 3 + 3 a 2 c + 6abc + 3 b 2 c + 3a c 2 + 3b c 2 + c3
= a 3 + b 3 + c 3 + 3 a 2 b + 3a b 2 + 3 a 2 c + 6abc + 3 b 2 c + 3a c 2 + 3b c 2
= a 3 + b 3 + c 3 + (3 a 2 b + 3a b 2 ) +( 3 a 2 c + 3abc)+ (3abc + 3 b 2 c)+(3a c 2 + 3b c 2 )
= a 3 + b 3 + c 3 + 3ab(a + b) + 3ac(a + b) + 3bc(a + b) + 3 c 2 (a + b)
= a 3 + b 3 + c 3 + 3(a + b)(ab + ac + bc + c 2 )
= a 3 + b 3 + c 3 + 3(a + b)[a(b + c) + c(b + c)]
= a 3 + b 3 + c 3 + 3(a + b)(b + c)(a + c) (đpcm)
\(a^2+b^2\) = (a+b)\(^2\) - 2ab
ta có
(a+b)\(^2\) - 2ab
= a\(^2\) + 2ab + b\(^2\) - 2ab
= a\(^2\) + b\(^2\) ( đpcm)
Đặt \(A=x-x^2-1\)\(\Rightarrow2A=2x-2x^2-2=-\left(x^2-2x+1\right)-x^2-1=-\left[\left(x-1\right)^2+x^2\right]-1< 0\)
\(\Rightarrow2A< 0\Rightarrow A< 0\)
\(\dfrac{\left(a+b\right)^2-\left(a-b\right)^2}{4}=\dfrac{a^2+2ab+b^2-a^2+2ab-b^2}{4}=\dfrac{4ab}{4}=ab\left(đpcm\right)\)
\(\left(x+y\right)^2+\left(x-y\right)^2=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2=2\left(x^2+y^2\right)\left(dpcm\right)\)
a) Biến đổi vế trái thành vế phải:
(x+y)3 - (x3+y3) = x3 + 3x2y+ 3xy2 + y3 - x3 - y3
= 3x2y+ 3xy2 = 3xy( x+ y)
Vậy: (x+y)3 - (x3+y3) = 3xy(x+y)
Biến đổi vế phải:
VP= (x+y)2 -2xy = x2+2xy+y2-2xy=x2+y2=VT
=> đpcm
=.= hok tốt!!
Ta có:
\(x^2+y^2\)
\(=x^2+2xy+y^2-2xy\)
\(=\left(x+y\right)^2-2xy\)
Hok tốt nhé
CM HĐT là
VD CM
( x + y)^2 = x^2 + 2xy + y^2
Phải không bạn