Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{12}{7}>1\)
\(\frac{89}{1112}< 1\)
\(\Rightarrow\frac{12}{7}>\frac{89}{1112}\) ( So sánh với 1)
Các so sánh ta có là so sánh tất cả các phân số với 1.
Ta có: \(\frac{12}{7}>1;\frac{89}{1112}< 1\) nên ta có \(\frac{12}{7}>\frac{89}{1112}\).
Vậy \(\frac{12}{7}>\frac{89}{1112}\).
~ Hok tốt ~
a) Ta có : \(\frac{12}{48}< \frac{12}{47}\); \(\frac{12}{48}< \frac{13}{48}\)
=> \(\frac{12}{48}< \frac{13}{47}\)
b) Ta có : \(\frac{7}{13}=1-\frac{6}{13}\)
\(\frac{17}{23}=1-\frac{6}{23}\)
Mà \(-\frac{6}{13}< -\frac{6}{23}\)=> \(\frac{7}{13}< \frac{17}{23}\)
Giải
Bài 1:
Các số tự nhiên mà chữ số hàng đơn vị hơn chữ số hàng chục 2 đơn vị gồm :
13;24;35;46;57;68;79.
Vậy có tất cả 7 số hạng như thế !
Bài 2:
Hai số tự nhiên giống nhau mà chia 5 dư 3 là 88.
Bài 3:
a)Số lượng số hạng của tổng trên là:
(403-31):4+1=94(số hạng)
Tổng trên là:
(403+31).94:2=20 398
Bài 4:
A.4 1/5.10/11+5 2/11
=21/5.10/11+57/11
=42/11+57/11
=99/11
=9
B.1,25+7/8:14/24-1/2
=125/100+7/8:14/24-1/2
=5/4+7/8:7/12-1/2
=5/4+3/2-1/2
=11/4-1/2
=9/4
Bài 1:
Ta có:
\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)
\(\Leftrightarrow N< M\)
Vậy \(M>N.\)
Bài 2:
Ta có:
\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)
\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)
\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
\(\Leftrightarrow A>B\)
Vậy \(A>B.\)
Bài 3:
\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)
\(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)
\(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)
Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)
\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm
\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)
Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)
Bài 4:
\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)
Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)
\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)
\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)
Vậy \(\frac{1991.1999}{1995.1995}< 1.\)
Tìm một phân số biết mẫu số hơn tử số 48 đơn vị và phân số đó có giá trị bằng\(\frac{3}{7}\)
Help me!
\(vì\hept{\begin{cases}-18>-23\\91< 144\end{cases}}\Rightarrow\frac{-18}{91}>\frac{-23}{144}\)
bsf iwsabdfsdnfjbs rfejgbeiorheoireievnrei re
ergperjohgieguieuwegwe e
weojifhew ìhewifwefhefew
fefjewufgweuieguwcvweycvuew
cvwe;vcejvihfewhfoefwifhweif
tttttttttttttttttttt
bài 1
a,
32 + 68 :17 x 5 - 29
= 32 + 20 -29
= 52 - 29
= 23
b,
15 x 48 - 30 x 24 - 125
= 720 - 720 -125
= 0-125
a,
32 + 68 :17 x 5 - 29
= 32 + 20 -29
= 52 - 29
= 23
b,
15 x 48 - 30 x 24 - 125
= 720 - 720 -125
= 0-125
ta có
\(1-\frac{2018}{2019}=\frac{1}{2019}\)và\(1-\frac{2019}{2020}=\frac{1}{2020}\)
vì\(\frac{1}{2019}>\frac{1}{2020}\)vậy\(\frac{2018}{2019}>\frac{2019}{2020}\)
a) Ta có \(\frac{13}{7}=2-\frac{1}{7}\)
\(\frac{21}{12}=2-\frac{1}{4}\)
Vì \(\frac{1}{7}< \frac{1}{4}\)\(\Rightarrow2-\frac{1}{7}>2-\frac{1}{4}\)\(\Rightarrow\frac{13}{7}>\frac{21}{12}\)
Vậy \(\frac{13}{7}>\frac{21}{12}\)
b) Ta có : \(\frac{2018}{2019}=1-\frac{1}{2019}\)
\(\frac{2019}{2020}=1-\frac{1}{2020}\)
Vì \(\frac{1}{2019}>\frac{1}{2020}\Rightarrow1-\frac{1}{2019}< 1-\frac{1}{2020}\Rightarrow\frac{2018}{2019}< \frac{2019}{2020}\)
Vậy \(\frac{2018}{2019}< \frac{2019}{2020}\)
c) Ta có :Vì \(\frac{17}{53}< \frac{17}{50}< \frac{19}{50}\) \(\Rightarrow\frac{17}{53}< \frac{19}{50}\)
Vậy \(\frac{17}{53}< \frac{19}{50}\)
-15 vs lại -9 à
Nếu là âm thì:
\(\frac{13}{17}>\frac{-15}{19}\);\(\frac{12}{48}>\frac{-9}{36}\)