Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
\(A=\frac{2011.2012-1}{2011.2012}\) và \(B=\frac{2012.2013-1}{2012.2013}\)
Ta có:
\(A=\frac{2011.2012-1}{2011.2012}\)
\(A=\frac{2011.2012-1.1-1.1}{2011.2012}\)
\(A=\frac{2011.2012-1.\left(1-1\right)}{2011.2012}\)
\(A=\frac{2011.2012-1.0}{2011.2012}\)
\(A=\frac{2011.2012-0}{2011.2012}\)
\(A=\frac{2011.2012}{2011.2012}\)
\(A=1\)
\(B=\frac{2012.2013-1}{2012.2013}\)
\(B=\frac{2012.2013-1.1-1.1}{2012.2013}\)
\(B=\frac{2012.2013-1.\left(1-1\right)}{2012.2013}\)
\(B=\frac{2012.2013-1.0}{2012.2013}\)
\(B=\frac{2012.2013-0}{2012.2013}\)
\(B=\frac{2012.2013}{2012.2013}\)
\(B=1\)
Vì 1 = 1
=> A = B
Hay
\(A=\frac{2011.2012-1}{2011.2012}\)= \(B=\frac{2012.2013-1}{2012.2013}\)
Vậy \(A=\frac{2011.2012-1}{2011.2012}\)= \(B=\frac{2012.2013-1}{2012.2013}\)
# Chúc bạn học tốt #
Ta có : A =( 2011.2012-1)/(2011.2012) = (2011.2012)/(2011.2012) - 1/(2011.2012) = 1 - (1/2011.2012)
B =( 2012.2013-1)/(2012.2013) = (2012.2013)/(2012.2013) - 1/(2012.2013) = 1 - (1/2012.2013)
Ta thấy : 1/(2011.2012)>1/(2012.2013)(vì chung tử số là 1 , mẫu số : 2011.2012 < 2012.2013)
Suy ra , 1-(1/2011.2012)<1-(1/2012.2013)
Suy tiếp : A < B
Ta có \(\frac{2012.2013}{2012.2013+1}\)và \(\frac{2013}{2012}\)
Vì \(\frac{2012.2013}{2012.2013+1}< 1< \frac{2013}{2012}\)
nên \(\frac{2012.2013}{2012.2013+1}< \frac{2013}{2012}\)
\(\frac{2012}{2013}\)và \(\frac{2011}{2012}\)
phàn bù của \(\frac{2012}{2013}\)là \(\frac{1}{2013}\)
phàn bù của \(\frac{2011}{2012}\)là \(\frac{1}{2012}\)
Vì \(\frac{1}{2012}>\frac{1}{2013}\Rightarrow\frac{2012}{2013}>\frac{2011}{2012}\)
Ta có : \(\frac{2012\cdot2013}{2012\cdot2013+1}< 1\)
\(\frac{2013}{2012}>1\)
\(\Rightarrow\frac{2012\cdot2013}{2012\cdot2013+1}< \frac{2013}{2012}\)
Có : \(\frac{2012}{2013}=1-\frac{2012}{2013}=\frac{2013}{2013}-\frac{2012}{2013}=\frac{1}{2013}\)
\(\frac{2011}{2012}=1-\frac{2011}{2012}=\frac{2012}{2012}-\frac{2011}{2012}=\frac{1}{2012}\)
Vì \(2013< 2012\)nên \(\frac{1}{2013}< \frac{1}{2012}\)hay \(\frac{2012}{2013}< \frac{2011}{2012}\)
1: \(C=2010\cdot2012\)
\(C=\left(2011-1\right)\left(2011+1\right)\)
\(C=2011\left(2011+1\right)-\left(2011+1\right)\)
\(C=2011\cdot2011+2011-2011-1=2011\cdot2011-1\)
Mà \(D=2011\cdot2011\)
\(\Rightarrow C< D\)
2: Chia 1 số cho 60 thì dư 37.Vậy chia số đó cho 15 thì được số dư là 7
3: Chú thích: giá trị nhỏ nhất=GTNN
Để M có GTNN
thì \(2012-\frac{2011}{2012-x}\) có GTNN
Nên \(\frac{2011}{2012-x}\)có GTLN
nên 2012-x>0 và x thuộc N
Suy ra: 2012-x=1
Suy ra: x=2011
Vậy, M có GTNN là 2011 khi x=2011
Ta có: \(\dfrac{2012.2013-1}{2012.2013}\)=\(\dfrac{2012.2013}{2012.2013}-\dfrac{1}{2012.2013}\)(1)
\(\dfrac{2011.2012-1}{2011.2012}\)=\(\dfrac{2011.2012}{2011.2012}-\dfrac{1}{2011.2012}\)(2)
Ta thấy:\(\dfrac{1}{2011.2012}>\dfrac{1}{2012.2013}\)=>(1)>(2) (vì số bị trừ đều như nhau mà số trừ lớn hơn nên b/thức đó bé hơn)
Vậy \(\dfrac{2011.2012-1}{2011.2012}< \dfrac{2012.2013-1}{2012.2013}\)
\(Q=\dfrac{2010+2011+2012}{2011+2012+2013}=\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\)
Ta có: \(\dfrac{2010}{2011+2012+2013}< \dfrac{2010}{2011}\)
\(\dfrac{2011}{2011+2012+2013}< \dfrac{2011}{2012}\)
\(\dfrac{2012}{2011< 2012< 2013}< \dfrac{2012}{2013}\)
\(\Rightarrow\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\)
\(\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2013}\)
\(P>Q\)
\(A=1+\dfrac{\dfrac{\left(1+2\right).2}{2}}{2}+\dfrac{\dfrac{\left(1+3\right).3}{2}}{3}+...+\dfrac{\dfrac{\left(1+2013\right).2013}{2}}{2013}\)
\(A=1+\dfrac{\dfrac{3.2}{2}}{2}+\dfrac{\dfrac{4.3}{2}}{3}+...+\dfrac{\dfrac{2014.2013}{2}}{2013}\)
\(A=1+\dfrac{3}{2}+\dfrac{2.3}{3}+...+\dfrac{1007.2013}{2013}\)
\(A=1+\dfrac{3}{2}+2+\dfrac{5}{2}...+1007\)
\(2A=2+3+4+5+6+...+2012+2013+2014\)
\(2A=\dfrac{\left(2+2014\right).2013}{2}\)
\(A=\dfrac{2016.2013}{4}=504.2013\)
\(B=\dfrac{-2}{1.3}+\dfrac{-2}{2.4}+...+\dfrac{-2}{2012.2014}+\dfrac{-2}{2013.2015}\)
\(-B=\dfrac{2}{1.3}+\dfrac{2}{2.4}+...+\dfrac{2}{2012.2014}+\dfrac{2}{2013.2015}\)
\(-B=\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2013.2015}\right)+\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{2012.2014}\right)\)
\(-B=\left(\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+...+\dfrac{2015-2013}{2013.2015}\right)+\left(\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+...+\dfrac{2014-2012}{2012.2014}\right)\)
\(-B=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{2013}-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}+...+\dfrac{1}{2012}-\dfrac{1}{2014}\right)\)
\(-B=\left(1-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{2014}\right)\)
\(-B=\dfrac{2014}{2015}+\dfrac{2012}{2014.2}=\dfrac{2014^2+1006.2015}{2015.2014}\)
\(B=\dfrac{2014^2+1006.2015}{-2015.2014}\)
1)\(\dfrac{-5}{2}:\dfrac{1}{4}\) = \(\dfrac{-5}{2}\) x \(\dfrac{4}{1}\) = \(\dfrac{-20}{2}\)
\(\dfrac{2011\cdot2012-1}{2011\cdot2012}=\dfrac{2011\cdot2012}{2011\cdot2012}-\dfrac{1}{2011\cdot2012}=1-\dfrac{1}{2011\cdot2012}\)
\(\dfrac{2012\cdot2013-1}{2012\cdot2013}=\dfrac{2012\cdot2013}{2012\cdot2013}-\dfrac{1}{2012\cdot2013}=1-\dfrac{1}{2012\cdot2013}\)
Vì \(\dfrac{1}{2011\cdot2012}>\dfrac{1}{2012\cdot2013}\Rightarrow1-\dfrac{1}{2011\cdot2012}>1-\dfrac{1}{2012\cdot2013}\)
Vậy \(\dfrac{2011\cdot2012-1}{2011\cdot2012}< \dfrac{2012\cdot2013-1}{2012\cdot2013}\)