Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số chính phương không bao giờ tận cùng là 2, 3, 7, 8, chỉ có chữ số tận cùng là 1, 4, 5, 6, 9.
=> Kết luận trên là đúng
Ta có :
02 = 0 => chữ số tận cùng là 0
12 = 1 => chữ số tận cùng là 1
22 = 4 => chữ số tận cùng là 4
32 = 6 => chữ số tận cùng là 6
42 = 16 => chữ số tận cùng là 6
52 = 25 => chữ số tận cùng là 5
62 = 36 => chữ số tận cùng là 6
72 = 49 => chữ số tận cùng là 9
82 = 64 => chữ số tận cùng là 4
92 = 81 => chữ số tận cùng là 1
=> Không có số chính phương nào có tận cùng là 2
1) ta có A = n^2+n+1 = n^2+n+n-n-1 = n(n+1)+1(n+1)+1(n+1) = (n+1)(n+1)+1 = (n+1)^2 +1
(n+1)^2+1=0
=> n+1=1 =>n+1=-1
=>n=0 =>n=-2(loại)
vậy n=0
Do vườn cây có số hàng bằng số cây mỗi hàng nên đây sẽ là vườn hình vuông.
Anh ta đếm số cây cũng có nghĩa số cây đó là diện tích khu vườn.
Công thức sở hữu là:bình phương số cây mỗi hàng.
Tận cùng các số được bình phương là:1;4;9;6;5.
Dễ dàng nhận thấy tận cùng số anh ta đếm là 7,vậy là sai.
Vậy anh ta tính sai.
Anh chắc em đã từng nói đúng nhỡ là số khác thì sao,suy ra sai đúng không,anh hồi tiểu học cũng như thế!
Chúc em học tốt^^
Gọi số tự nhiên phải tìm là abcd(a,d\(\ne\)0; a,b,c,d <10)
Vì số chính phương có 4 chữ số có 2 chữ số đầu và 2 chữ số cuối ( không đổi thứ tự các chữ số) tạo thành 2 số chính phương
=> ab và cd à 2 số chính phương.
TH1: Nếu ab=cd, mà ab và cd là 2 số chính phương
=>ab\(\in\){ 16; 25;36;49;64;81}
cd\(\in\){16;25;36;49;64;81}
Ta được các số 1616;2525;3636;4949;6464;8181
Ta thấy: 1616;2525;4949;6464 chia cho 3 đều dư 2( do 1+6+1+6; 2+5+2+5;4+9+4+9;6+4+6+4 đều chia cho 3 dư 2)
Mà số chính phương chia cho 3 dư 0 hoặc 1
=> 4 số trên đều không phải là số chính phương
TH2: Nếu ab\(\ne\)cd; mà cd và ab là 2 số chính phương
=> Ta lập được các số
1625;2516; 3616; 4916;6416;8116
1636; 2536;3625;4925;6425;8125
1649; 2549;3649;4936;6436;8136
1664;2564;3664;4964;6449;8149
1681 ; 2581; 3681;4981;6481;8164
Mà số chính phương chia cho 3 dư 0;1
=>Các số 1625;1664;1649;2516;2549;2564;4916;4925; 4964;6416;6425;6449 không phải là số chính phương.
Sau đó phân ích các số còn lại ra thừa số nguyên tố rồi thử chọn
Answer:
Câu 1:
Số ban đầu \(222...2\) (Gồm mười lăm chữ số 2)
Tổng các chữ số
\(15\times2=30\)
Khi cộng thêm các chữ số 0 vào thì tổng sẽ là 30
=> Chia hết cho 3 nhưng lại không chia hết cho 9
Vậy không còn cách nào để thêm
Câu 2:
Số đó là \(1223334444\)
Tổng các chữ số
\(1+2\times2+3\times3+4\times4=30\)
=> 1223334444 chia hết cho 3
=> Để 1223334444 là số chính phương thì 122333444 chia hết cho 9
Mà 30 thì không chia hết cho 9
Vậy 122333444 không phải là số chính phương.
1 số tự nhiên chia \(⋮\)k thì phải \(⋮\)k2
Gọi số tự nhiên gồm 15 chữ số 2 là a(a \(\in\)N)
Khi thêm các c/s 0 tùy ý vào vị trí thì tổng các c/s của a ko thay đổi và vẫn là 15 . 2=30
1 số có tổng các c/s \(⋮\)3 thì \(⋮\)3
=> Số a hay số mới phải \(⋮\)3
Giả sử có cách viết thêm các c/s 0 vào vị trí tùy ý để số mới tạo thành 1 số chính phương
=> Số mới là 1 số chính phương
=> Số mới \(⋮\)3 => số mới phải \(⋮\)9
Mà 30 ko chia hết cho 9 => số mới ko chia hết cho 9 (vô lý)
=> giả sử sai
Vậy ko có cách nào để viết thêm c/s 0 vào vị trí tùy ý để tạo thành là 1 số chính phương
đúng
HT
Trả lời :
Vì số chính phương không bao giờ tận cùng là 2, 3, 7, 8, chỉ có chữ số tận cùng là 1, 4, 5, 6, 9 nên không có số chính phương nào có hàng đơn vị là 2
~~Học tốt~~