Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Bezout ta có:
f(x) chia hết cho x-3 \(\Rightarrow f\left(3\right)=0\)
\(\Leftrightarrow2a+3b=-87\left(1\right)\)
g(x) chia hết cho x-3 \(\Rightarrow g\left(3\right)=0\)
\(\Leftrightarrow-3a+2b=-318\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}2a+3b=-87\\-3a+2b=-318\end{cases}\Leftrightarrow}\hept{\begin{cases}a=60\\b=-69\end{cases}}\)
Vậy ...
Mk nghĩ yêu cầu là tìm đa thức f(x) sai thì bn cmt nha
Gọi dư khi chia f(x) cho (x - 2)(x - 3) là ax + b
h(x), g(x) lần lượt là thương khi chia f(x) cho x - 2; x - 3
+ \(f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\)
+ Ta có : \(\left\{{}\begin{matrix}f\left(x\right)=\left(x-2\right)\cdot h\left(x\right)+5\\f\left(x\right)=\left(x-3\right)\cdot g\left(x\right)+7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
Do đó : \(f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\)
3x3+10x2-5 chia hết cho 3x-1
<=> 3x3-3x3-x2+10x2-5 chia hết cho 3x+1
<=> 9x2-5 chia hết cho 3x+1
<=> 9x2-(9x2+3x)-5 chia hết cho 3x+1
<=> 3x-5 chia hết cho 3x+1
<=> 6 chia hết cho 3x+1 <=> 3x+1 E Ư(6)
Vì 3x+1 chia 3 dư 1
<=> 3x+1 E {1;-2}
<=> 3x E {0;-3} <=> x E {0;-1}
Phân tích đa thức thành nhân tử:
a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)
b) \(25-x^2+4xy-4y^2=25-\left(x^2-4xy+4y^2\right)=25-\left(x-2y\right)^2\)
\(=\left(5-x+2y\right)\left(5+x-2y\right)\)
Rút gọn biểu thức;
\(A=\left(6x+1\right)^2+\left(3x-1\right)^2-2\left(3x-1\right)\left(6x+1\right)\)
\(=\left[\left(6x+1\right)-\left(3x-1\right)\right]^2=\left(6x+1-3x+1\right)=\left(3x+2\right)^2\)
Tìm a để đa thức.. Bạn chia cột dọ thì da
\(xy+y^2-x-y=\left(xy+y^2\right)-\left(x+y\right)=y\left(x+y\right)-\left(x+y\right)=\left(y-1\right)\left(x+y\right)\)b)\(25-\left(x^2-4xy+4y^2\right)=5^2-\left(x-2y\right)^2=\left(x-2y+5\right)\left(5-x+2y\right)\)
\(f\left(x\right)=x^3-9x^2+6x+16\)
\(\Leftrightarrow f\left(x\right)=\left(x^3-10x^2+16x\right)+\left(x^2-10x+16\right)\)
\(\Leftrightarrow f\left(x\right)=x\left(x^2-10x+16\right)+\left(x^2-10x+16\right)\)
\(\Leftrightarrow f\left(x\right)=\left(x+1\right)\left(x^2-10x+16\right)\)
\(\Leftrightarrow f\left(x\right)=\left(x+1\right)\left(x^2-8x-2x+16\right)\)
\(\Leftrightarrow f\left(x\right)=\left(x+1\right)\left[x\left(x-8\right)-2\left(x-8\right)\right]\)
\(\Leftrightarrow f\left(x\right)=\left(x+1\right)\left(x-2\right)\left(x-8\right)\)
Vậy f(x) chia hết cho x + 1 nhưng không chia hết cho x - 3
Bạn có thể dùng sơ đồ Hoóc-ne
a
Vậy \(f\left(x\right)⋮x+1\)
b
Vậy \(f\left(x\right)\) không chia hết cho \(x-3\)