Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nha bạn
Ta có: ∠ AOC + ∠ BOC = ∠ AOB
⇒ 60o + ∠ BOC = 90o
⇒ ∠ BOC = 30o (1)
Lại có: ∠ BOC + ∠ COD = ∠ BOD
⇒ 30o + ∠COD = 60o
⇒ ∠ COD = 30o (2)
Từ (1) và (2) ⇒ ∠ BOC = ∠ COD = 30o
Suy ra: OC là phân giác của ∠ BOD
Ta có: ∠ COD + ∠ AOD = ∠ AOC
⇒ 30o + ∠ AOD = 60o
⇒ ∠ AOD = 30o
Vì ∠ COD = ∠ AOD = 30o nên OD là phân giác của ∠ AOC
b) Vì OB là phân giác của DOE nên ∠ BOD = ∠ BOE = 60\(^0\)
Ta có: ∠ BOC + ∠ BOE = ∠ COE
⇒ 30o + 60o = ∠ COE
⇒ ∠ COE = 90o
⇒ OC ⊥ OE ( đpcm )
a) vì OB, OC đều thuộc mp OA mà góc AOC > góc AOB (70 >35) => OB thuộc góc AOC
=> góc AOB + góc BOC = góc AOC => góc BOC = góc AOC - góc AOB = 70-35= 35
vì góc AOB= góc BOC ( 35=35) => OB là phân giác AOC
b) Vì OB' là tia đối của OB => góc BOA + góc AOB' = 180 (độ) (kề bù)
=> góc AOB' = 180- góc BOA =180-35= 145(độ)
Vậy góc kề bù với AOB =145 độ
Bạn cần câu c thì mình làm câu c nha!
Do OD là tia đối của OB nên \(\widehat{BOD}=180^0\)
Khi đó có 2 góc \(\widehat{BOC};\widehat{COD}\) kề bù.
Ta có:\(\widehat{BOC}+\widehat{COD}=180^0\)
\(\Rightarrow\widehat{COD}=180^0-50^0=130^0\)
a) Vì tia OD nằm trong A O B ^ nên tia OD nằm giữa hai tia OA và OB do đó
A O D ^ + B O D ^ = A O B ^
Suy ra: A O D ^ = A O B ^ − B O D ^ = 90 0 − 60 0 = 30 0
Tương tự ta cũng có C O B ^ = 30 0 , D O C ^ = 30 0 .
b) Vì là tia phân giác của D O E ^ nên D O B ^ = B O E ^ = 60 0 .
Vì OB nằm giữa hai tia OC và OE và C O B ^ = 30 0 nên ta có
E O C ^ = E O B ^ + B O C ^ = 60 0 + 30 0 = 90 0
Vậy O C ⊥ O E
Bài 1
a
Ta có:
\(\widehat{O_1}=\widehat{O_2}=60^0\left(đ.đ\right)\)
\(\widehat{O_1}+\widehat{O_2}=180^0\Rightarrow\widehat{0_2}=180^0-\widehat{O_1}=180-60^0=120^0\)
\(\widehat{O_2}=\widehat{O_4}=120^0\left(đ.đ\right)\)
b
Ta có:
\(\widehat{x'Oy}=\widehat{y'Ox}\Rightarrow\frac{1}{2}\widehat{x'Oy}=\frac{1}{2}\widehat{y'Ox}\Rightarrow\widehat{yOn}=\widehat{xOm}\)
\(\widehat{x'Oy}+\widehat{yOx}=180^0\)
\(\Rightarrow2\cdot\widehat{yOn}+\widehat{yOx}=180^0\)
\(\Rightarrow\widehat{yOn}+\widehat{yOx}+\widehat{xOm}=180^0\)
\(\Rightarrowđpcm\)
Bài 2
a
Ta có:
\(\widehat{BOD}=\widehat{AOC}=90^0\Rightarrow\widehat{BOC}+\widehat{COD}=\widehat{AOD}+\widehat{COD}\Rightarrow\widehat{BOC}=\widehat{AOD}\)
b
Ta có:
\(\widehat{BOM}=\widehat{BOC}+\widehat{COM}=\widehat{AOD}+\widehat{MOD}=\widehat{MOA}\)
Hiển nhiên OM nằm giữa \(\widehat{AOB}\) nên suy ra đpcm
Do mình không biết vẽ hình như nào nên mình sẽ chỉ giải bài thôi nhé , thoog cảm
Bài 1
Ta có \(\widehat{AOC}+\widehat{BOD}+\widehat{COD}=120^0\)
hay \(30^o+30^o+\widehat{COD}=120^o\)
\(\Rightarrow\widehat{COD}=120^o-30^o-30^o=60^o\)
Mà \(\widehat{AOC}+\widehat{COD}=30^o+60^o=90^o\)
Hay OA vuông góc với OD
Tương tự ta có OB vuông góc với OC
Vậy OA vuông góc với OD ; OB vuông góc với OC
a) Vì OB' là tia p/g của góc A'OC nên góc A'OB' = A'OC /2 = 90o/ 2 = 45o
Vì tia OB' nằm giữa hai tia OA và OA' nên góc A'OB' + B' OA = A'OA
=> 45o + B'OA = 180o
=> B'OA = 180o - 45o = 135o
=> Góc B'OA + AOB = 135o + 45o = 180o Mà tia OA nằm giữa 2 tia OB và OB' ( Vì tia OB và OB' nằm ở nửa mp khác nhau bờ là AA')
=> góc BOB' = 180o => tia OB và OB' đối nhau
ta có góc AOB = A'OB' (= 45o) Mà tia OA và OA' đối nhau ; tia OB và OB' đối nhau
=> 2 góc AOB và A'OB' đối nhau
b) Tia OD nằm giữa 2 tia OB và OB' => góc B'OD + DOB = BOB"
=> B'OD + 900 = 180o
=> B'OD = 90o
Lại có tia OA' nằm giữa 2 tia OD và OB'
=> góc A'OB' + A'OD = B'OD
=> 45o + A'OD = 90o => góc A'OD = 45o
trên cùng 1 nửa mặt phẳng bờ chứa tia OA:
AOB+BOC=AOC
Mà AOB =60 độ;AOC=120 độ
60 độ +BOC=120độ
BOC=120 độ -60 độ
BOC= 60 độ
Vậy BOC=60 độ
b/vì AOB=60O(B/C)
BOC=60O(theo trên)
suy ra AOB=BOC(vì 600=600)
suy ra OB là tia phân giác của AOC