Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ở lớp 10A, ta tính được
x 1 = 52 , 4 k g ; s 1 = 7 , 1 k g
Ở lớp 10B, ta tính được
x 2 = 49 k g ; s 2 = 7 , 9 k g
x 1 > x 2 , nên học sinh ở lớp 10A có khối lượng lớn hơn.
a) Số cách chọn 1 bạn từ nhóm 15 bạn là tổ hợp chập 1 của 15 \(C_{15}^1 = 15\) cách
b) Việc chọn 3 thành viên của nhóm đang học ở ba lớp khác nhau gồm 3 công đoạn:
Công đoạn 1: Chọn 1 bạn từ lớp 10A có 4 cách
Công đoạn 2: Chọn 1 bạn từ lớp 10B có 5 cách
Công đoạn 3: Chọn 1 bạn từ lớp 10C có 6 cách
Áp dụng quy tắc nhân, ta có \(4.5.6 = 120\) cách chọn 3 thành viên của nhóm đang học ở ba lớp khác nhau
c) Việc chọn 2 thành viên của nhóm đang học ở hai lớp khác nhau có 3 trường hợp:
TH1: 2 bạn đang học ở lớp 10A và 10B có \(4.5 = 20\) cách
TH2: 2 bạn đang học ở lớp 10A và 10C có \(4.6 = 24\) cách
TH3: 2 bạn đang học ở lớp 10C và 10B có \(6.5 = 30\) cách
Áp dụng quy tắc cộng, ta có \(20 + 24 + 30 = 74\) cách chọn 2 thành viên của nhóm đang học ở hai lớp khác nhau
Hình 59: Đường gấp khúc tần suất về cân nặng (kg) của học sinh lớp 10A, lớp 10B trường Trung học phổ thông L.
Nhìn vào hai đường gấp khúc tần suất ở trên, ta có nhận xét
Trong những người có cân nặng không vượt quá 45 kg, các học sinh lớp 10B luôn chiếm tỉ lệ cao hơn. Còn trong những trường hợp có cân nặng không thấp hơn 51 kg, các học sinh lớp 10A luôn chiếm tỉ lệ cao hơn.
Ở lớp 10A: 13,16% + 39,48% + 23,68% + 15,79% = 92,11%
Ở lớp 10B: 28,08% + 28,26% + 15,22% + 10,87% =80,43%
Tổng số khả năng có thể xảy ra của phép thử là \(n\left( \Omega \right) = C_{45}^2.C_{45}^2\)
a) Gọi A là biến cố “Trong 4 bạn được chọn có ít nhất 1 bạn nam”, ta có biến cố đối \(\overline A \): “Trong 4 bạn được chọn không có bạn nam nào”
\(\overline A \) xảy ra khi các bạn được chọn đều là nữ. Số kết quả thuận lợi cho biến cố \(\overline A \) là \(n\left( {\overline A } \right) = C_{20}^2.C_{24}^2\)
Xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{{n\left( {\overline A } \right)}}{{n\left( \Omega \right)}} = \frac{{C_{20}^2.C_{24}^2}}{{C_{45}^2.C_{45}^2}} = \frac{{874}}{{16335}}\)
Suy ra, xác suất của biến cố A là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{874}}{{16335}} = \frac{{15461}}{{16335}}\)
b) Gọi A là biến cố “Trong 4 bạn được chọn có đủ cả nam và nữ” ta có biến cố đối \(\overline A \): “Trong 4 bạn được chọn đều là nữ hoặc đều là nam”
\(\overline A \) xảy ra khi các bạn được chọn đều là nữ hoặc nam. Số kết quả thuận lợi cho biến cố \(\overline A \) là \(n\left( {\overline A } \right) = C_{20}^2.C_{24}^2 + C_{25}^2.C_{21}^2\)
Xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{{n\left( {\overline A } \right)}}{{n\left( \Omega \right)}} = \frac{{C_{20}^2.C_{24}^2 + C_{25}^2.C_{21}^2}}{{C_{45}^2.C_{45}^2}} = \frac{{1924}}{{16335}}\)
Suy ra, xác suất của biến cố A là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{1924}}{{16335}} = \frac{{14411}}{{16335}}\)
a) Số cách chọn ba học sinh bất kì là: \(C_{40}^3 = 9880\)
b) Số cách chọn ba học sinh gồm 1 nam và 2 nữ là: \(C_{25}^1.C_{15}^2 = 2625\)
c) Số cách chọn 3 học sinh trong đó không có học sinh nam là: \(C_{15}^3 = 455\)
Số cách chọn 3 học sinh trong đó có ít nhất một học sinh nam là: \(9880 - 455 = 9425\)
Cân nặng của các học sinh lớp 10A và 10B trường Trung học phổ thông L.
Lớp cân nặng (kg) | Tần số | |
10A | 10B | |
[30;36) | 2,63 | 4,35 |
[36;42) | 5,26 | 15,22 |
[42;48) | 13,16 | 26,08 |
[48;54) | 39,48 | 28,26 |
[54;60) | 23,68 | 15,22 |
[60;66] | 15,79 | 10,87 |
Cộng | 100 (%) | 100 (%) |
a)
b)
+) Lớp 10A
Số trung bình \(\overline x = \frac{{5.1 + 6.4 + 7.5 + 8.8 + 9.14 + 10.8}}{{1 + 4 + 5 + 8 + 14 + 8}} = 8,35\)
Sắp sếp số liệu theo thứ tự không giảm, ta được: \(5,6,6,6,6,7,7,7,7,7,\underbrace {8,...,8}_8,\underbrace {9,...,9}_{14},\underbrace {10,...,10}_8\)
Do \(n = 40\), là số chẵn nên trung vị là: \({M_e} = \frac{1}{2}(9 + 9) = 9\)
Mốt \({M_e} = 9\)
+) Lớp 10B
Số trung bình \(\overline x = \frac{{5.4 + 6.6 + 7.10 + 8.10 + 9.6 + 10.4}}{{4 + 6 + 10 + 10 + 6 + 4}} = 7,5\)
Sắp sếp số liệu theo thứ tự không giảm, ta được: \(5,5,5,5,\underbrace {6,..,6}_6,\underbrace {7,...,7}_{10},\underbrace {8,...,8}_{10},\underbrace {9,...,9}_6,10,10,10,10\)
Do \(n = 40\), là số chẵn nên trung vị là: \({M_e} = \frac{1}{2}(7 + 8) = 7,5\)
Mốt \({M_e} = 7;{M_e} = 8.\)
+) Lớp 10C
Số trung bình \(\overline x = \frac{{5.1 + 6.3 + 7.17 + 8.11 + 9.6 + 10.2}}{{1 + 3 + 17 + 11 + 6 + 2}} = 7,6\)
Sắp sếp số liệu theo thứ tự không giảm, ta được: \(5,6,6,6,\underbrace {7,...,7}_{17},\underbrace {8,...,8}_{11},\underbrace {9,...,9}_6,10,10\)
Do \(n = 40\), là số chẵn nên trung vị là: \({M_e} = \frac{1}{2}(7 + 7) = 7\)
Mốt \({M_e} = 7\)
+) So sánh:
Số trung bình: \(8,35 > 7,6 > 7,5\) => Điểm số của HS các lớp theo thứ tự giảm dần là 10A, 10C, 10B.
Số trung vị: \(9 > 7,5 > 7\)=> Điểm số của HS các lớp theo thứ tự giảm dần là 10A, 10B, 10C.
Mốt: Lớp 10A có 14 điểm 9, Lớp 10B có 10 điểm 7 và 10 điểm 8, Lớp 10C có 17 điểm 7. Do đó so sánh theo mốt thì điểm số các lớp giảm dàn theo thứ tự là: 10A, 10B, 10C.
TH1: 2 bạn lớp 10A, 1 bạn lớp 10B, 1 bạn lớp 10C có số cách chọn là:
\(C_{30}^2\). 35. 32 = 487200( cách)
TH2: 1 bạn lớp 10A, 2 bạn lớp 10B, 1 bạn lớp 10C có số cách chọn là:
30.\(C_{35}^2\). 32 = 571200 (cách)
TH3: 1 bạn lớp 10A, 1 bạn lớp 10B, 2 bạn lớp 10C có số cách chọn là:
30. 35.\(C_{32}^2\) = 520800 (cách)
Vậy số cách lựa chọn là: 487200+ 571200 + 520800= 1579200 cách.