Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi x (Km/ h)là vận tốc của ca nô khi nước yên lặng
vận tốc khi đi suôi dòng là x + 3
vận tốc khi đi ngực dòng là x - 3
thời gian khi đi suôi dòng là \(\dfrac{30}{x+3}\)
thời gian khi đi ngực dòng là \(\dfrac{30}{x-3}\)
thời gian nghỉ là 40 phút = \(\dfrac{40}{60}\) = \(\dfrac{2}{3}\) giờ
vì tổng thời gian từ lúc đi đến lúc trở về là 6 giờ
nên ta có phương trình :
\(\dfrac{30}{x+3}\)+\(\dfrac{30}{x-3}\)+\(\dfrac{2}{3}\) = 6
\(\Leftrightarrow\) \(\dfrac{30.\left(x-3\right)+30.\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\) +\(\dfrac{2}{3}\) = 6
\(\Leftrightarrow\) \(\dfrac{60x}{x^2-9}\)+\(\dfrac{2}{3}\) = 6\(\Leftrightarrow\) \(\dfrac{60x}{x^2-9}\)= \(\dfrac{16}{3}\)
\(\Leftrightarrow\) 180x = 16x2 - 144\(\Leftrightarrow\) 16x2 -180x -144 = 0
\(\Leftrightarrow\) 4x2 - 45x -36 = 0
giải \(\Delta\) ta có 2 nghiệm :x1=12 (tmđk) ; x2=-\(\dfrac{3}{4}\) (loại)
vậy vận tốc khi nước yên lặng là 12(Km/h)
*Gọi vận tốc riêng của thuyền là x (km/h) (1<x < 60)
Vận tốc khi xuồng xuôi dòng là: x + 1 (km/h)
Vận tốc khi xuồng ngược dòng là: x - 1(km/h)
*Thời gian xuồng xuôi dòng từ A --> B là: 60/(x + 1) (h)
Thời gian xuồng xuôi dòng đến bến C là: 25/(x - 1) (h)
30 phút = 1/2 (h)
*Vì thời gian kể từ lúc đi đến lúc quay trở lại đến bến C hết tất cả là 8 giờ nên ta có PT:
60/(x + 1) + 25/(x - 1) + 1/2 = 8
=> 60.2.(x - 1) + 25.2(x + 1) + (x - 1)(x + 1) = 8.2(x - 1)(x + 1)
<=> 120x - 120 + 50x + 50 + x^2 - 1 = 16x^2 - 16
<=> 15x^2 - 170x + 55 = 0
delta' = (- 85)^2 - 55.15 = 6400 = 80^2 > 0
=> PT có 2 nghiệm pb:
x1 = (85 - 80)/15 = 1/3 (loại)
x2 = (85 + 80)/15 = 11 (thỏa mãn điều kiện bài ra)
Vậy vận tốc xuồng máy khi nước yên lặng là 11km/h
Gọi vận tốc của ca nô khi nước yên lặng là x(km/h; x>4)
=> Vận tốc xuôi dòng của ca nô là x+4(km/h)
Vận tốc ngược dòng của ca nô là x-4(km/h)
Theo bải ra:
Khoảng cách giữa 2 bến sông A và B là 48 km
=> Thời gian xuôi dòng của ca nô:\(\frac{48}{x+4}\)(h)
Thời gian ngược dòng của ca nô:\(\frac{48}{x-4}\)(h)
Cả thời gian đi và về là 5(h)
=>\(\frac{48}{x+4}+\frac{48}{x-4}=5\)
=>\(\frac{48\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}+\frac{48\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}=\frac{5\left(x+4\right)\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\)
=>\(48\left(x-4\right)+48\left(x+4\right)=5\left(x+4\right)\left(x-4\right)\)
=>\(48x-192+48x+192=\left(5x+20\right)\left(x-4\right)\)
=>\(96x=5x^2-80\)
=>\(5x^2-96x-80=0\)
=>\(\orbr{\begin{cases}x=20\left(TM\right)\\x=\frac{-4}{5}\left(KTM\right)\end{cases}}\)
Vậy vận tốc của ca nô khi nước yên lặng là 20 km/h
bài này hệ là \(\frac{30}{x-3}+\frac{30}{x+3}=6-\frac{40}{60}\)
Gọi x (km/h) là vận tốc của ca nô khi nước yên lặng.
Điều kiện: x > 3
Khi đó vận tốc khi đi xuôi dòng trên sông là x + 3 (km/h)
vận tốc khi đi ngược dòng trên sông là x – 3 (km/h)
thời gian ca nô đi xuôi dòng là 30/(x + 3) (giờ)
thời gian ca nô đi ngược dòng là 30/(x - 3) (giờ)
thời gian ca nô nghỉ ở B là 40 phút = 2/3 (giờ)
Theo đề bài, ta có phương trình:
Giá trị x = - 3/4 không thỏa mãn điều kiện bài toán.
Vậy vận tốc của ca nô khi nước yên lặng là 12 km/h.