K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2017

xin lỗi mình làm zùi nhưng để quên vở ở lớp zùi và bt của mình cũng sặp chết rồi

16 tháng 1 2016

\(a,\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}<1\)

\(b,\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{50.50}\)

\(<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}<1\)

=>điều cần chứng minh

16 tháng 1 2016

Bai nay de ma bn! Neu bn biet cong thuc la lam dc a!!!

12 tháng 8 2016

Bài 1:

C = 1/101 + 1/102 + 1/103 + ... + 1/200

Có:

C < 1/101 + 1/101 + 1/101 + ... + 1/101

C < 100 . 1/101

C < 100/101

Mà 100/101 < 1

=> C < 1 (1)

Có:

C > 1/200 + 1/200 + 1/200 + ... + 1/200

C > 100 . 1/200

C > 1/2 (2)

Từ (1) và (2)

=> 1/2<C<1

Ủng hộ nha mk làm tiếp

11 tháng 5 2016

\(A=\frac{3}{1}+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+3+...+99+100}\)

\(=3+\frac{3}{\frac{\left(1+2\right).2}{2}}+\frac{3}{\frac{\left(1+3\right).3}{2}}+...+\frac{3}{\frac{\left(1+100\right).100}{2}}\)

\(=3+\frac{6}{2.3}+\frac{6}{3.4}+...+\frac{6}{100.101}=3+6.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)

\(=3+6.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(=3+6.\left(\frac{1}{2}-\frac{1}{101}\right)=3+6.\frac{99}{202}=\frac{600}{101}\)

11 tháng 5 2016

Tốt nhất bạn nên nói mấy bài đơn giản ik dạng nâng cao ko có cho thi đâu đừng lo

hehe

30 tháng 3 2017

ko know

Xét vế phải :

\(VP=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}-1\)

\(=2.\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)

\(=2\left[\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right]\)

\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}=VT\Rightarrow\left(đpcm\right)\)