Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. (-2,5 . 0,38 . 0,4) - [0,125 . 3,15 . (-8)].
= [(-2,5 . 0,4) . 0,38) - [3,15 . (-8 . 0,125)]
= -1 . 0,38 - 3,15 . (-1)
= 3,15 - 0,38
= 2,77
b. [(-20,83) . 0,2 + (-9,17) . 0,2] : [2,47 . 0,5 - (-3,53) . 0,5].
= [0,2(-20,83 - 9,17)] : [0,5(2,47 + 3,53)]
= (-0,2 . 30) : (0,5 . 6)
= - 6 : 3
= -2
Ta có:
\(P\left(1\right)=a+b+c\)
\(P\left(4\right)=16a+4b+c\)
\(P\left(9\right)=81a+9b+c\)
Vì P(1); P(4) là số hữu tỉ nên \(P\left(4\right)-P\left(1\right)=15a+3b=3\left(5a+b\right)\)là số hữu tỉ
=> \(5a+b\)là số hữu tỉ (1)
Vì P(1); P(9) là số hữu tỉ nên \(P\left(9\right)-P\left(1\right)=80a+8b=8\left(10a+b\right)\)là số hữu tỉ
=> \(10a+b\)là số hữu tỉ (2)
Từ (1), (2) => \(\left(10a+b\right)-\left(5a+b\right)=10a+b-5a-b=5a\)là số hữu tỉ
=> a là số hữu tỉ
Từ (1)=> b là số hữu tỉ
=> c là số hữu tỉ
Gọi số đo của các góc A, B, C lần lượt là a;b;c (a;b;c > 0)
Vỉ các góc đó lần lượt tỉ lệ với các số 2;3;5 nên
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và a + b + c = 180o
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{180^o}{10}=18^o\)
\(\Rightarrow\hept{\begin{cases}a=18^o.2=36^o\\b=18^o.3=54^o\\c=18^o.5=90^o\end{cases}}\)
Vậy góc A = 36o; góc B = 54o; góc C = 90o
Khi cộng, trừ các đa thức ta có thể :
- Dựa vào quy tắc " dấu ngoặc "
- Tính chất các phép tính trên số
Để cộng, trừ hai đa thức một biến, ta có thể thực hiện theo một trong hai cách sau:
Cách 1. Thực hiện theo cách cộng, trừ đa thức đã học ở Bài 6.
Cách 2. Sắp xếp các hạng tử của hai đa thức cùng theo lũy thừa giảm (hoặc tăng) của biến, rồi đặt phép tính theo cột dọc tương tự như cộng, trừ các số (chú ý đặt các đơn thức đồng dạng ở cùng một cột).
Xem thêm tại: https://loigiaihay.com/ly-thuyet-cong-tru-da-thuc-mot-bien-c42a6556.html#ixzz6JMXw2gAy