Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau ta có :}\)
\(\Rightarrow\frac{40x-20y}{5}=\frac{10z-40x}{7}=\frac{20y-10z}{9}=\frac{40x-20y+10z-40x+20y-10z}{5+7+9}=0\)
\(\Rightarrow40x=20y\left(1\right);\)
\(20y=10z\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow40x=20y=10z\)
\(\Rightarrow\hept{\begin{cases}40x=20y\\20y=10z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{40}\\\frac{y}{10}=\frac{z}{20}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{20}=\frac{y}{40}\\\frac{y}{40}=\frac{z}{80}\end{cases}}\Rightarrow\frac{x}{20}=\frac{y}{40}=\frac{z}{80}\Rightarrow\frac{2x}{40}=\frac{3y}{120}=\frac{4z}{320}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{20}=\frac{y}{40}=\frac{z}{80}=\frac{2x}{40}=\frac{3y}{120}=\frac{4z}{320}=\frac{2x+3y+4z}{40+120+320}=\frac{48}{480}=\frac{1}{10}\)
\(\Rightarrow10x=20\Rightarrow x=2;\)
\(10y=40\Rightarrow y=4;\)
\(10z=80\Rightarrow z=8\)
Vậy x = 2 ; y = 4 ; z = 8
Từ giả thiết \(\Rightarrow\frac{2.\left(40x-20y\right)}{5}=\frac{2.\left(10z-40x\right)}{7}=\frac{2.\left(2y-10z\right)}{9}\)
\(\Leftrightarrow\frac{80x-40y}{5}=\frac{20z-80x}{7}=\frac{40y-20z}{9}\)
Ta có \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{am}{xm}=\frac{bn}{yn}=\frac{cp}{zp}=\frac{am-bn+cp}{xm-yn+zp}\) (đpcm)
Câu 1:
\(x^4=16\)
\(\Rightarrow x=2\) hoặc \(x=-2\)
Vậy \(x\in\left\{2;-2\right\}\)
Câu 2:
\(\left(x+5\right)^3=-64\)
\(\Rightarrow\left(x+5\right)^3=\left(-4\right)^3\)
\(\Rightarrow x+5=-4\)
\(\Rightarrow x=-9\)
Vậy \(x=-9\)
Câu 4:
Giải:
Ta có: \(\frac{x}{2}=\frac{y}{-5}\) và \(x-y=-7\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)
+) \(\frac{x}{2}=-1\Rightarrow x=-2\)
+) \(\frac{y}{-5}=-1\Rightarrow y=5\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(-2;5\right)\)
Câu 5:
Giải:
Đổi 10km = 10000m
Gọi 10000m dây đồng nặng x ( kg )
Vì số dây đồng tỉ lệ thuận với số cân nặng nên ta có:
\(\frac{5}{43}=\frac{10000}{x}\)
\(\Rightarrow x=\frac{10000.43}{5}=86000\left(kg\right)\)
Vậy 1km dây đồng nặng 86000 kg
Câu 6:
Giải:
Gọi số học sinh giỏi, khá , trung bình của khối 7 là a, b, c \(\left(a;b;c\in N\right)\)
Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và \(c+b-a=180\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{c+b-a}{3+5-2}=\frac{180}{6}=30\)
+) \(\frac{a}{2}=30\Rightarrow a=60\)
+) \(\frac{b}{3}=30\Rightarrow b=90\)
+) \(\frac{c}{5}=30\Rightarrow c=150\)
Vậy số học sinh giỏi là 60 học sinh
số học sinh khá là 90 học sinh
số học sinh trung bình là 150 học sinh
Câu 7:
a) Ta có: \(y=f\left(x\right)=x^2-8\)
\(f\left(3\right)=3^2-8=9-8=1\)
\(f\left(-2\right)=\left(-2\right)^2-8=4-8=-4\)
b) Khi y = 17
\(\Rightarrow17=x^2-8\)
\(\Rightarrow x^2=25\)
\(\Rightarrow x=5\) hoặc \(x=-5\)
Vậy \(x\in\left\{5;-5\right\}\)
Giải:
Áp dụng tính chất của dãy tỉ số bằng nhau,
Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x^2-y^2+2z^2}{2^2-3^2+2.4^2}=\dfrac{108}{27}=4\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=4\\\dfrac{y}{3}=4\\\dfrac{z}{4}=4\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=2.4\\y=3.4\\z=4.4\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=8\\y=12\\z=16\end{matrix}\right.\)
a) xem lại thiếu cái đk gì đó
b) thích chọn số nào tùy
\(\frac{1}{2}=\frac{2}{4}< \frac{3}{4}< \frac{4}{4}< \frac{5}{4}< \frac{6}{4}< \frac{7}{4}< \frac{8}{4}< \frac{9}{4}< \frac{10}{4}=\frac{5}{2}\)
không có tỉ số = nhau thì god cũng k làm đc. Cô là thánh r