K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

a) Hàm số y=

Tập xác định: (0; +∞).

Sự biến thiên: > 0, ∀x ∈ (0; +∞) nên hàm số luôn luôn đồng biến.

Giới hạn đặc biệt: = 0, = +∞, đồ thị hàm số có tiệm cận.

Bảng biến thiên

Đồ thị( hình bên). Đồ thị hàm số qua (1;1), (2;).

b) y= .

Tập xác định: ℝ \{0}.

Sự biến thiên: < 0, ∀xj# 0, hàm nghich biến trong hai khoảng (-∞;0) và (0; +∞).

Giới hạn đặc biệt:= +∞, = -∞, = 0, = 0; đồ thị hàm số nhận trục tung làm tiệm cận đứng, trục hoành làm tiệm cận ngang.

Bảng biến thiên

Đồ thị ( hình dưới). Đồ thị qua (-1;-1), (1;1), (2; ), ( -2; ). Hàm số đồ thị đã cho là hàm số lẻ nên đối xứng qua gốc tọ độ.



5 tháng 11 2018

 

 

Do đó, hàm số đã cho nghịch biến trên tập xác định.

+ Giới hạn:

Giải bài 3 trang 61 sgk Giải tích 12 | Để học tốt Toán 12

⇒ x = 0 (trục Oy) là tiệm cận đứng của đồ thị hàm số

    y = 0 (trục Ox) là tiệm cận ngang của đồ thị hàm số.

+ Bảng biến thiên:

Giải bài 3 trang 61 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị:

Giải bài 3 trang 61 sgk Giải tích 12 | Để học tốt Toán 12

22 tháng 3 2017

Tập xác định: R\{0}

Hàm số đã cho là hàm số lẻ.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: y′ < 0, ∀ x ∈ R \ {0} nên hàm số luôn nghịch biến trên các khoảng xác định.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị có tiệm cận ngang là trục hoành, tiệm cận đứng là trục tung.

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị của hàm số có tâm đối xứng là gốc tọa độ.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

6 tháng 12 2017

Tập xác định: D = (0; + ∞ )

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì y' < 0 ∀ x ∈ D nên hàm số nghịch biến.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị có tiệm cận đứng là trục tung, tiệm cận ngang là trục hoành.

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

18 tháng 10 2021

undefinedundefined

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit