Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Ta có: \(\dfrac{2}{5}\cdot\left[\left(\dfrac{3}{5}\right)^2:\left(-\dfrac{1}{5}\right)^2-7\right]\cdot\left(1000\right)^0\cdot\left|-\dfrac{11}{15}\right|\)
\(=\dfrac{2}{5}\cdot\left(\dfrac{9}{25}:\dfrac{1}{25}-7\right)\cdot1\cdot\dfrac{11}{15}\)
\(=\dfrac{2}{5}\cdot\dfrac{11}{15}\cdot2\)
\(=\dfrac{44}{75}\)
Chọn `A.\sqrt{36}+\sqrt{63}>10`
Vì `\sqrt{63}>\sqrt{16}=4`
`=>\sqrt{36}+\sqrt{63}>6+4=10`
\(D=\frac{1}{2}+\frac{3}{2^2}+\frac{7}{2^3}+\frac{15}{2^4}+\frac{31}{2^5}+\frac{63}{2^6}=\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\frac{31}{32}+\frac{63}{64}\)\(=\frac{1}{2}+\left(1-\frac{1}{4}+1-\frac{1}{8}+1-\frac{1}{16}+1-\frac{1}{32}+1-\frac{1}{64}\right)=\frac{1}{2}+5-\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)\)đến đấy thôi
b: \(A=\dfrac{2}{3}\left(\dfrac{1}{60}-\dfrac{1}{63}+\dfrac{1}{63}-\dfrac{1}{66}+...+\dfrac{1}{117}-\dfrac{1}{120}\right)+\dfrac{2}{2003}\)
\(=\dfrac{2}{3}\cdot\dfrac{1}{120}+\dfrac{2}{2003}\)
\(=2\left(\dfrac{1}{360}+\dfrac{1}{2003}\right)\)
\(B=\dfrac{5}{4}\left(\dfrac{1}{40}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{48}+...+\dfrac{1}{76}-\dfrac{1}{80}\right)+\dfrac{5}{2003}\)
\(=\dfrac{5}{4}\cdot\dfrac{1}{80}+\dfrac{5}{2003}\)
\(=5\left(\dfrac{1}{320}+\dfrac{1}{2003}\right)\)
Vì 1/360+1/2003<1/320+1/2003
nên A<B
Đáp án A