Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có A=\(\left(x^3+x^2-3x\right)+\left(-2x^2-2x+a+2\right)=-x\left(-x^2-x+3\right)-2x^2-2x+a+2⋮-x^2-x+3\)
\(\Rightarrow C=-2x^2-2x+a+2⋮B\). Chỉ có thể C=\(2\left(-x^2-x+3\right)\Rightarrow a+2=6\Rightarrow a=4\)
\(A=\left(2x^3+3x^2+4x\right)+\left(-10x^2-15x+a-8\right)=x\left(2x^2+3x+4\right)+\left(-10x^2-15x+a-8\right)⋮2x^2+3x+4\)\(\Rightarrow C=-10x^2-15x+a-8⋮2x^2+3x+4\)
Chỉ có thể C=\(-5\left(2x^2+3x+4\right)\) \(\Rightarrow a-8=-20\Rightarrow a=-12\)
x^4 -5x^2+a x^2+3x+2 x^2-3x+2 x^4-3x^3+2x^2 - 3x^3-7x^2+a 3x^3-9x^2+6x - 2x^2-6x+a 2x^2-6x+4 - a-4
Để \(x^4-5x^2+a\)chia hết cho \(x^2-3x+2\)\(\Leftrightarrow a-4=0\)
\(\Leftrightarrow a=4\)
Vậy a=4 để ....
Cách 2 xét giá trị riêng
Đặt \(f\left(x\right)=x^4-5x^2+a\)
Vì \(f\left(x\right)⋮x^2-3x+2\)
\(\Rightarrow f\left(x\right)=\left(x^2-3x+2\right)q\left(x\right)\)
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=\left(1-3+2\right)q\left(1\right)\\f\left(2\right)=\left(2^2-3.2+2\right)q\left(2\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}f\left(1\right)=0\left(1\right)\\f\left(2\right)=0\left(2\right)\end{cases}}\)
(1) xảy ra \(\Leftrightarrow1^4-5.1^2+a=0\)
\(\Leftrightarrow-4+a=0\)
\(\Leftrightarrow a=4\left(3\right)\)
(2) xảy ra \(\Leftrightarrow2^4-5.2^2+a=0\)
\(\Leftrightarrow-4+a=0\)
\(\Leftrightarrow a=4\left(4\right)\)
Từ (3) và(4) \(\Rightarrow a=4\)
Vậy ...
Ta thực hiện phép chia :
x - 5x + a x - 3x + 2 4 2 2 x 2 x-3x+2x 4 3x -7x 3 3 2 2 +3x 3x -9x +6x - - 3 2 2x -6x +a +2 2 2x -6x +4 2 a - 4 -
Vậy để đây là phép chia hết thì a - 4 = 0 hay a = 4.
Bài 2
\(a,x^3+2x^2+x\)
\(=x.\left(x^2+2x+1\right)\)
\(b,xy+y^2-x-y\)
\(=y.\left(x+y\right)-\left(x+y\right)\)
\(=\left(y-1\right).\left(x+y\right)\)
bài 3
\(a,3x.\left(x^2-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x=0\\x^2=4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=2,x=-2\end{cases}}\)
vậy x=0,x=2 hay x=-2
\(b,xy+y^2-x-y=0\)
\(y.\left(x+y\right)-\left(x+y\right)=0\)
\(\left(y-1\right).\left(x+y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y-1=0\\x+y=0\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\x=-1\end{cases}}}\)
vậy x=-1, y=1
= (𝑥2 − 𝑥 − 4𝑥 + 4): ( x - 4 )
= ( x - 4 ) ( x - 1 ) : ( x - 4 )
= x - 1