Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
P=\(\frac{1}{3.10}\)+\(\frac{1}{10.17}\)+\(\frac{1}{17.24}\)+......+\(\frac{1}{73.80}\)-\(\frac{1}{2.9}\)-\(\frac{1}{9.16}\)-\(\frac{1}{16.23}\)-\(\frac{1}{23.30}\))
P=\(\frac{1}{7}\)\(\times\)(\(\frac{7}{3.10}\)+\(\frac{7}{10.17}\)+\(\frac{7}{17.24}\)+......\(\frac{7}{73.80}\)-\(\frac{7}{2.9}\)-\(\frac{7}{9.16}\)-\(\frac{7}{16.23}\)-\(\frac{7}{23.30}\))
P=\(\frac{1}{7}\)\(\times\)(\(\frac{1}{3}\)-\(\frac{1}{10}\)+\(\frac{1}{10}\)-\(\frac{1}{17}\)+.....+\(\frac{1}{73}\)-\(\frac{1}{80}\)-\(\frac{1}{2}\)-\(\frac{1}{9}\)-......-\(\frac{1}{23}\)-\(\frac{1}{30}\))
P=\(\frac{1}{7}\)\(\times\)(\(\frac{1}{3}\)-\(\frac{1}{80}\))-\(\frac{1}{7}\)(\(\frac{1}{2}\)-\(\frac{1}{30}\))
P=\(\frac{1}{7}\)\(\times\)(\(\frac{1}{3}\)-\(\frac{1}{80}\)-\(\frac{1}{2}\)+\(\frac{1}{30}\))
P=\(\frac{-7}{336}\)
Bài này mk ko tính máy tính nên ko chắc đâu
taị mk ko tính máy tính lên sai.
bn thông cảm nha. thường ngày hay dùng máy tính quá nên tính sai thì bn thông cảm
Nếu phân số thứ 2 là \(\frac{1}{10.17}\) thì làm như vậy nè
\(\frac{1}{3.10}+\frac{1}{10.17}+...+\frac{1}{73.80}-\frac{1}{2.9}-\frac{1}{9.16}-\frac{1}{16.23}-\frac{1}{23.30}\)
= \(\frac{1}{7}\left(\frac{1}{3}-\frac{1}{10}+\frac{1}{10}-\frac{1}{17}+...+\frac{1}{73}-\frac{1}{80}\right)-\left(\frac{1}{2.9}+\frac{1}{9.16}+\frac{1}{16.23}+\frac{1}{23.30}\right)\)
= \(\frac{1}{7}\left(\frac{1}{3}-\frac{1}{80}\right)-\frac{1}{7}\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+\frac{1}{16}-\frac{1}{23}+\frac{1}{23}-\frac{1}{30}\right)\)
= \(\frac{1}{7}.\frac{77}{240}-\frac{1}{7}\left(\frac{1}{2}-\frac{1}{30}\right)=\frac{1}{7}.\frac{77}{240}-\frac{1}{7}.\frac{7}{15}\)
= \(\frac{11}{240}-\frac{1}{15}\)
= \(-\frac{1}{48}\)
\(\frac{1}{3.1}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+...+\frac{1}{97.99}-\frac{1}{98.100}\)
= \(\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)
= \(\frac{1}{2}\left(1-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{100}\right)\)
= \(\frac{1}{2}\left(1-\frac{1}{99}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)=\frac{1}{2}.\frac{98}{99}-\frac{1}{2}.\frac{49}{100}\)
= \(\frac{49}{99}-\frac{49}{200}\)
= \(\frac{4949}{19800}\)
bn zô xem nha, ko hiểu thì cứ hỏi bn ấy nhá
http://olm.vn/hoi-dap/question/154321.html
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{99}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=\frac{1}{2}\cdot\frac{98}{99}-\frac{1}{2}\cdot\frac{49}{100}\)
\(=\frac{1}{2}\left(\frac{98}{99}-\frac{49}{100}\right)=\frac{1}{2}\cdot\frac{4949}{9900}=\frac{4949}{19800}\)
\(A=\frac{1}{1\times3}+\frac{1}{2\times4}+\frac{1}{3\times5}+\frac{1}{4\times6}+\frac{1}{5\times7}+\frac{1}{6\times8}+\frac{1}{7\times9}+\frac{1}{8\times10}\)
\(2A=\frac{2}{1\times3}+\frac{2}{2\times4}+\frac{2}{3\times5}+\frac{2}{4\times6}+\frac{2}{5\times7}+\frac{2}{6\times8}+\frac{2}{7\times9}+\frac{2}{8\times10}\)
\(2A=1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+\frac{1}{4}-\frac{1}{6}+\frac{1}{5}-\frac{1}{7}+\frac{1}{6}-\frac{1}{8}+\frac{1}{7}-\frac{1}{9}+\frac{1}{8}-\frac{1}{10}\)
\(2A=1+\frac{1}{2}-\frac{1}{9}-\frac{1}{10}\)
\(2A=\frac{58}{45}\)
\(A=\frac{58}{45}\div2\)
\(A=\frac{29}{45}\)
\(2A=\frac{2}{1.3}+\frac{2}{2.4}+...+\frac{2}{8.10}=1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-....+\frac{1}{8}-\frac{1}{10}\)
\(=1+\frac{1}{2}-\frac{1}{9}-\frac{1}{10}=\frac{58}{45}\)
\(A=\frac{29}{45}\)
\(A=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(A=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)
\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(A=\frac{4}{9}-\frac{1}{5}=\frac{11}{45}\)
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(S=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)
\(S=\frac{1}{2}\left(1-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{10}\right)\)
\(S=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(S=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)
\(S=\frac{4}{9}-\frac{1}{5}\)
\(S=\frac{11}{45}\)
=\(\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+...+\frac{2}{8.10}\right)\)
= \(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+....+\frac{1}{8}-\frac{1}{10}\right)\)
= \(\frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{9}-\frac{1}{10}\right)\)
=\(\frac{29}{45}\)
Bài làm
D=ko viết lại đề
=1/1.3+1/1.5+1/5.7+1/7.9-1/2.4-1/4.6-1/6.8-1/8.10
=1+1/9-1-1/10
=10/9-9/10
=19/90
=(1/1.3+...+1/7.9)-(1/2.4+...+1/8.10)
=2(1/1.3+...+1/7.9)-2(1/2.4+...+1/8.10)
=(2/1.3+...+2/7.9)-(2/2.4+...+2/8.10)
=(1-1/3+...+1/7-1/9)-(1/2-1/4+ +1/8-1/10)
=1-1/9-1/2+1/10
tự tính tiếp nhé
\(A=\frac{1}{3\cdot10}+\frac{1}{10\cdot17}+\frac{1}{17\cdot24}+...+\frac{1}{73\cdot80}-\frac{1}{2\cdot9}-\frac{1}{9\cdot16}-\frac{1}{16\cdot23}-\frac{1}{23\cdot30}\)
\(A=\frac{1}{7}\left(\frac{7}{3\cdot10}+\frac{7}{10\cdot17}+\frac{7}{17\cdot24}+...+\frac{7}{73\cdot80}-\frac{7}{2\cdot9}-\frac{7}{9\cdot16}-\frac{7}{16\cdot23}-\frac{7}{23\cdot30}\right)\)
\(A=\frac{1}{7}\left(\frac{1}{3}-\frac{1}{10}+\frac{1}{10}-\frac{1}{17}+...+\frac{1}{73}-\frac{1}{80}-\frac{1}{2}+\frac{1}{9}-\frac{1}{9}+\frac{1}{16}-...-\frac{1}{23}-\frac{1}{30}\right)\)
\(A=\frac{1}{7}\left(\frac{1}{3}-\frac{1}{80}-\frac{1}{2}-\frac{1}{30}\right)\)