K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

Lời giải:

Xét số hạng tổng quát:

\(\frac{1}{n\sqrt{n+1}+(n+1)\sqrt{n}}=\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n(n+1)}(\sqrt{n}+\sqrt{n+1})}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Do đó:

\(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2019}}-\frac{1}{\sqrt{2020}}\)

\(=1-\frac{1}{\sqrt{2020}}\)

2 tháng 10 2019

undefinedundefined

2 tháng 10 2019

cảm ơn

19 tháng 6 2017

Phần d mình sửa lại đề nha : \(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{4}-4}\)

11 tháng 5 2018

bn xem lại đề câu d đi sao mẫu lại bằng 0 rồi