Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
g: \(=\dfrac{-3}{4}-\dfrac{1}{4}+\dfrac{5}{7}+\dfrac{2}{7}+\dfrac{3}{5}=\dfrac{3}{5}\)
h: \(=\dfrac{7}{19}\left(\dfrac{8}{11}+\dfrac{3}{11}\right)-\dfrac{12}{19}=\dfrac{7}{19}-\dfrac{12}{19}=-\dfrac{5}{19}\)
i: \(=\dfrac{2013}{7}\left(19+\dfrac{5}{8}-26-\dfrac{5}{8}\right)=\dfrac{2013}{7}\cdot\left(-7\right)=-2013\)
-6/8=-3/2
2/7
Quy đồng được 12/20+-35/20=-23/20
Quy đồng được -10/15+3/15=-7/15
Quy đồng lên được -4/26+-5/26=-9/26
Quy đồng lên được: -12/21+7/21=-5/21 nhé
\(\dfrac{-1}{8}+\dfrac{-5}{8}=\dfrac{-6}{8}=\dfrac{-3}{4}\)
\(\dfrac{-3}{7}+\dfrac{5}{7}=\dfrac{2}{7}\)
\(\dfrac{3}{5}+\dfrac{-7}{4}=\dfrac{12}{20}+\dfrac{-35}{20}=\dfrac{-23}{20}\)
\(\dfrac{-2}{3}+\dfrac{1}{5}=\dfrac{-10}{15}+\dfrac{3}{15}=\dfrac{-13}{15}\)
\(\dfrac{2}{13}+\dfrac{-5}{26}=\dfrac{-4}{26}+\dfrac{-5}{26}=\dfrac{-9}{26}\)
\(\dfrac{-4}{7}+\dfrac{1}{3}=\dfrac{-12}{21}+\dfrac{7}{21}=\dfrac{-5}{21}\)
f: \(=\dfrac{7}{19}\left(\dfrac{8}{11}+\dfrac{3}{11}\right)-\dfrac{12}{19}=\dfrac{7}{19}-\dfrac{12}{19}=\dfrac{-5}{19}\)
i: \(=\left(\dfrac{9}{24}-\dfrac{18}{24}+\dfrac{14}{24}\right)\cdot\dfrac{6}{5}+\dfrac{1}{2}=\dfrac{5}{24}\cdot\dfrac{6}{5}+\dfrac{1}{2}\)
=1/4+1/2=3/4
` 7/19 . 8/11 + 3/11 . 7/19 + (-12)/19 `
`= 7/19 . ( 8/11 + 3/11 ) + (-12)/19 `
`= 7/19 . 11/11 + (-12)/19`
`= 7/19 . 1 + (-12)/19 `
`= 7/19 + (-12)/19 `
`= -5/19 `
`( 3/8 + (-3)/4 + 7/12 ) : 5/6 + 1/2`
`= 3/8 + (-3)4 + 7/12 . 6/5 + 1/2`
`= ( 9+(-18) + 14)/24 . 6/5 + 1/2`
`= 5/24 . 6/5 + 1/2`
`= 1/4 + 1/2 `
`= 3/4`
`@` `\text {Ans}`
`\downarrow`
`j)`
`-3/4 + 2/7 + (-1)/4 + 3/5 + 5/7`
`= (-3/4 - 1/4) + (2/7 + 5/7) + 3/5`
`= -1 + 1 + 3/5`
`= 3/5`
`k)`
`-2/17 + 15/23 + (-15)/17 + 4/19 + 8/23`
`= (-2/17 - 15/17) + (15/23 + 8/23) + 4/19`
`= -1 + 1 + 4/19`
`= 4/19`
$#KDN040510$
j: =-3/4-1/4+2/7+5/7+3/5
=-1+1+3/5
=3/5
k: =-2/17-15/17+15/23+8/23+4/19
=-1+1+4/19
=4/19
\(a,\dfrac{11}{22}-\dfrac{3}{16}.\dfrac{8}{18}+\dfrac{1}{18}=\dfrac{1}{2}-\dfrac{1}{12}+\dfrac{1}{18}=\dfrac{18}{36}-\dfrac{3}{36}+\dfrac{2}{36}=\dfrac{17}{36}\)
\(b,\dfrac{5}{7}+\dfrac{3}{7}:4-\dfrac{8}{9}.\dfrac{-3}{4}=\dfrac{5}{7}+\dfrac{3}{7}.\dfrac{1}{4}-\dfrac{-2}{3}=\dfrac{5}{7}+\dfrac{3}{28}+\dfrac{2}{3}=\dfrac{60}{84}+\dfrac{9}{84}+\dfrac{56}{84}=\dfrac{125}{84}\)
a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)
Vậy A < B
b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)
c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:
\(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)
Vậy A < B
a) \(A=\dfrac{7}{8}\left(-\dfrac{5}{9}-\dfrac{4}{9}\right)+5\dfrac{7}{8}\)
\(A=\dfrac{7}{8}.\left(-1\right)+5\dfrac{7}{8}=5\dfrac{7}{8}-\dfrac{7}{8}=5\).
\(B=\dfrac{1}{4}.\dfrac{8}{5}.\dfrac{25}{16}.\dfrac{-7}{4}=\dfrac{-35}{32}\)
\(I=\dfrac{3}{8^3}+\dfrac{3}{8^4}=\dfrac{3.8}{8^4}+\dfrac{3}{8^4}=\dfrac{27}{8^4}\)
\(K=\dfrac{7}{8^3}+\dfrac{7}{8^4}=\dfrac{7.8}{8^4}+\dfrac{7}{8^4}=\dfrac{63}{8^4}\)
Vậy \(I< K\) vì \(\dfrac{27}{8^4}< \dfrac{63}{8^4}\)